Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Respir Res ; 25(1): 250, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902783

RESUMO

INTRODUCTION: Lower respiratory tract infections(LRTIs) in adults are complicated by diverse pathogens that challenge traditional detection methods, which are often slow and insensitive. Metagenomic next-generation sequencing (mNGS) offers a comprehensive, high-throughput, and unbiased approach to pathogen identification. This retrospective study evaluates the diagnostic efficacy of mNGS compared to conventional microbiological testing (CMT) in LRTIs, aiming to enhance detection accuracy and enable early clinical prediction. METHODS: In our retrospective single-center analysis, 451 patients with suspected LRTIs underwent mNGS testing from July 2020 to July 2023. We assessed the pathogen spectrum and compared the diagnostic efficacy of mNGS to CMT, with clinical comprehensive diagnosis serving as the reference standard. The study analyzed mNGS performance in lung tissue biopsies and bronchoalveolar lavage fluid (BALF) from cases suspected of lung infection. Patients were stratified into two groups based on clinical outcomes (improvement or mortality), and we compared clinical data and conventional laboratory indices between groups. A predictive model and nomogram for the prognosis of LRTIs were constructed using univariate followed by multivariate logistic regression, with model predictive accuracy evaluated by the area under the ROC curve (AUC). RESULTS: (1) Comparative Analysis of mNGS versus CMT: In a comprehensive analysis of 510 specimens, where 59 cases were concurrently collected from lung tissue biopsies and BALF, the study highlights the diagnostic superiority of mNGS over CMT. Specifically, mNGS demonstrated significantly higher sensitivity and specificity in BALF samples (82.86% vs. 44.42% and 52.00% vs. 21.05%, respectively, p < 0.001) alongside greater positive and negative predictive values (96.71% vs. 79.55% and 15.12% vs. 5.19%, respectively, p < 0.01). Additionally, when comparing simultaneous testing of lung tissue biopsies and BALF, mNGS showed enhanced sensitivity in BALF (84.21% vs. 57.41%), whereas lung tissues offered higher specificity (80.00% vs. 50.00%). (2) Analysis of Infectious Species in Patients from This Study: The study also notes a concerning incidence of lung abscesses and identifies Epstein-Barr virus (EBV), Fusobacterium nucleatum, Mycoplasma pneumoniae, Chlamydia psittaci, and Haemophilus influenzae as the most common pathogens, with Klebsiella pneumoniae emerging as the predominant bacterial culprit. Among herpes viruses, EBV and herpes virus 7 (HHV-7) were most frequently detected, with HHV-7 more prevalent in immunocompromised individuals. (3) Risk Factors for Adverse Prognosis and a Mortality Risk Prediction Model in Patients with LRTIs: We identified key risk factors for poor prognosis in lower respiratory tract infection patients, with significant findings including delayed time to mNGS testing, low lymphocyte percentage, presence of chronic lung disease, multiple comorbidities, false-negative CMT results, and positive herpesvirus affecting patient outcomes. We also developed a nomogram model with good consistency and high accuracy (AUC of 0.825) for predicting mortality risk in these patients, offering a valuable clinical tool for assessing prognosis. CONCLUSION: The study underscores mNGS as a superior tool for lower respiratory tract infection diagnosis, exhibiting higher sensitivity and specificity than traditional methods.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Infecções Respiratórias , Humanos , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Infecções Respiratórias/epidemiologia , Fatores de Risco , Idoso , Adulto , Líquido da Lavagem Broncoalveolar/microbiologia , Líquido da Lavagem Broncoalveolar/virologia , Hospitalização , Valor Preditivo dos Testes
2.
J Chem Phys ; 160(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38165095

RESUMO

Photodissociation of CO2 via the 1Πg state is investigated using a time-sliced velocity-mapped ion imaging apparatus combined with a tunable vacuum ultraviolet photolysis source. The main O(1D2) + CO(X1Σ+) channel is directly observed from the measured images of O(1D2) photoproducts at 129.08-134.76 nm. The total kinetic energy release spectra determined based on these images show that the energetic thresholds for the O(1D2) + CO(X1Σ+) photoproducts correspond to the thermochemical thresholds for the photodissociation of CO2(v2 = 0) and CO2(v2 = 1). One significant difference among the CO(X1Σ+, v) vibrational distributions for the predominant CO2(v2 = 0) dissociation is that the population of CO(v = 0) becomes favorable at 130.23-133.45 nm compared to the Boltzmann-like component (v > 0) that always exists at 129.08-134.76 nm. The wavelength dependences of the overall ß are found to follow the variation trend of the CO(v = 0) abnormal intensity. The vibrational state-specific ß values present a roughly decreasing trend with an increase in v, whereas ß(v = 0) appears to be significantly larger than ß(v = 1) at 130.23-133.45 nm compared to 134.76 and 129.08 nm. The non-statistical CO(v = 0) with larger ß values at 130.23-133.45 nm implies that an additional pathway may open through the conical intersection coupling to the dissociative 21A' state, except for the ever-existing pathway that yields the Boltzmann-like component. In contrast, at 129.08 nm, the restoration of the statistical equilibrium in the CO(X1Σ+, v) vibrational distribution may be caused by the emergence of novel dissociation pathways arising from the participation of the 31A″ state.

3.
Ecotoxicol Environ Saf ; 274: 116168, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460409

RESUMO

Dilated cardiomyopathy (DCM) is a primary cause of heart failure (HF), with the incidence of HF increasing consistently in recent years. DCM pathogenesis involves a combination of inherited predisposition and environmental factors. Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormone action and are capable of targeting various organs, including the heart. However, the impact of these disruptors on heart disease through their effects on genes remains underexplored. In this study, we aimed to explore key DCM-related genes using machine learning (ML) and the construction of a predictive model. Using the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) and performed enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DCM. Through ML techniques combining maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key genes for predicting DCM (IL1RL1, SEZ6L, SFRP4, COL22A1, RNASE2, HB). Based on these key genes, 79 EDCs with the potential to affect DCM were identified, among which 4 (3,4-dichloroaniline, fenitrothion, pyrene, and isoproturon) have not been previously associated with DCM. These findings establish a novel relationship between the EDCs mediated by key genes and the development of DCM.


Assuntos
Cardiomiopatia Dilatada , Disruptores Endócrinos , Cardiopatias , Humanos , Coração , Biologia Computacional , Disruptores Endócrinos/toxicidade , Aprendizado de Máquina
4.
Phys Chem Chem Phys ; 25(26): 17403-17409, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37350183

RESUMO

The decay dynamics of 2-aminopyridine and 3-aminopyridine excited to the S1 state is investigated using femtosecond time-resolved photoelectron imaging. The lifetime of the S1 state for both molecules shows a rapid decrease with the increase of the vibrational energy. It is shown that, besides intersystem crossing to the lower-lying triplet state of T1, the decay to the ground state (S0) via internal conversion through a conical intersection plays an increasingly important role and becomes dominant for vibrational states well above the S1 state origin. The comparison between 2-aminopyridine and 3-aminopyridine suggests that the intramolecular hydrogen bonding between a hydrogen atom of the NH2 group and the heterocyclic nitrogen atom in 2-aminopyridine effectively hinders the ring deformation at lower vibrational states which is required for the wavepacket to reach the S1/S0 conical intersection, and therefore slows down the S1 to S0 internal conversion.

5.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047381

RESUMO

Cav1.2 Ca2+ channels, a type of voltage-gated L-type Ca2+ channel, are ubiquitously expressed, and the predominant Ca2+ channel type, in working cardiac myocytes. Cav1.2 channels are regulated by the direct interactions with calmodulin (CaM), a Ca2+-binding protein that causes Ca2+-dependent facilitation (CDF) and inactivation (CDI). Ca2+-free CaM (apoCaM) also contributes to the regulation of Cav1.2 channels. Furthermore, CaM indirectly affects channel activity by activating CaM-dependent enzymes, such as CaM-dependent protein kinase II and calcineurin (a CaM-dependent protein phosphatase). In this article, we review the recent progress in identifying the role of apoCaM in the channel 'rundown' phenomena and related repriming of channels, and CDF, as well as the role of Ca2+/CaM in CDI. In addition, the role of CaM in channel clustering is reviewed.


Assuntos
Canais de Cálcio Tipo L , Calmodulina , Calmodulina/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo
6.
Rep Prog Phys ; 85(8)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35623319

RESUMO

Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.

7.
Mol Biol Rep ; 49(4): 2565-2577, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35037195

RESUMO

BACKGROUND: The aim of this study was to study the relationship between the methylation level of the promoter region of follicle-stimulating hormone receptor (FSHR) gene and the mRNA expression of Duolang sheep fed different energy diets. METHODS: In this study, polyembryo estrus Duolang sheep under different energy levels were selected as the experimental subjects. Dietary nutrient level reference (NY/T 816-2004), medium energy level was 10.88 MJ/day, high and low energy groups were increased and decreased by 15% on the basis of medium energy level, respectively 12.51 MJ/day, 9.25 MJ/day. Through RNA and DNA extraction, qPCR, bisulfitegenomicse-quencing PCR (BSP), sequence matching and other analysis of ovarian tissue of Duolang sheep. The difference of DNA methylation level and mRNA expression of FSHR gene during estrus in Duolang sheep fed with different energy diets was detected. RESULTS: The results showed the expression level of FSHR in high energy group was significantly higher than that in low energy group (P < 0.01), the expression level of FSHR in high energy group was significantly higher than that in medium energy group (P < 0.05), and the expression level of FSHR in medium energy group was significantly higher than that in low energy group (P < 0.05). In the target fragment of the promoter region of the FSHR gene, the methylation rate was 25% in the high energy group, 50% in the normal group, and 75% in the low energy group. CONCLUSIONS: This study revealed that different dietary energy levels had certain effects on the FSHR gene DNA methylation level and mRNA expression, and the expression level was negatively correlated with methylation level.


Assuntos
Metilação de DNA , Receptores do FSH , Animais , Metilação de DNA/genética , Dieta , Estro , Feminino , Hormônio Foliculoestimulante/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do FSH/genética , Receptores do FSH/metabolismo , Ovinos/genética
8.
Curr Microbiol ; 79(12): 365, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253613

RESUMO

Strawberry mild yellow edge virus (SMYEV) is a latent virus that severely affects the yield and quality of strawberry fruit. The technology suitable for rapid and accurate detection of SMYEV on site is important to effectively control its spread. In this study, a reverse transcription recombinase polymerase amplification combined with lateral flow strip (SMYEV-RT-RPA-LF), targeting the conserved genome of Beijing SMYEV isolate, was established to diagnose SMYEV in strawberries. The SMYEV-RT-RPA-LF assay showed no cross-reaction with other strawberry viruses. The sensitivity of SMYEV-RT-RPA-L assay was 100 times higher than that of RT-PCR (10 pg/µL). In addition, through the detection of suspected samples in the field, it was found that the accuracy of SMYEV-RT-RPA-L assay was consistent with the RT-PCR results. However, compared with RT-PCR, SMYEV-RT-RPA-LF assay has the advantages of simple operation, time savings, and high specificity and sensitivity, indicating the potential application of SMYEV-RT-RPA-LF in the rapid field diagnosis of SMYEV.


Assuntos
Fragaria , Transcrição Reversa , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/genética , Sensibilidade e Especificidade
9.
Neurochem Res ; 46(3): 523-534, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33394222

RESUMO

Voltage-gated sodium channels (VGSCs) are fundamental to the initiation and propagation of action potentials in excitable cells. Ca2+/calmodulin (CaM) binds to VGSC type II (NaV1.2) isoleucine and glutamine (IQ) motif. An autism-associated mutation in NaV1.2 IQ motif, Arg1902Cys (R1902C), has been reported to affect the combination between CaM and the IQ motif compared to that of the wild type IQ motif. However, the detailed properties for the Ca2+-regulated binding of CaM to NaV1.2 IQ (1901Lys-1927Lys, IQwt) and mutant IQ motif (IQR1902C) remains unclear. Here, the binding ability of CaM and CaM's constituent proteins including N- and C lobe to the IQ motif of NaV1.2 and its mutant was investigated by protein pull-down experiments. We discovered that the combination between CaM and the IQ motif was U-shaped with the highest at [Ca2+] ≈ free and the lowest at 100 nM [Ca2+]. In the IQR1902C mutant, Ca2+-dependence of CaM binding was nearly lost. Consequently, the binding of CaM to IQR1902C at 100 and 500 nM [Ca2+] was increased compared to that of IQwt. Both N- and C lobe of CaM could bind with NaV1.2 IQ motif and IQR1902C mutant, with the major effect of C lobe. Furthermore, CaMKII had no impact on the binding between CaM and NaV1.2 IQ motif. This research offers novel insight to the regulation of NaV1.2 IQwt and IQR1902C motif, an autism-associated mutation, by CaM.


Assuntos
Calmodulina/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Transtorno Autístico/genética , Calmodulina/química , Humanos , Simulação de Acoplamento Molecular , Mutação , Canal de Sódio Disparado por Voltagem NAV1.2/química , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Ligação Proteica
10.
Am J Physiol Cell Physiol ; 318(5): C991-C1004, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186935

RESUMO

Calmodulin (CaM) mutations are associated with congenital long QT (LQT) syndrome (LQTS), which may be related to the dysregulation of the cardiac-predominant Ca2+ channel isoform CaV1.2. Among various mutants, CaM-E141G was identified as a critical missense variant. However, the interaction of this CaM mutant with the CaV1.2 channel has not been determined. In this study, by utilizing a semiquantitative pull-down assay, we explored the interaction of CaM-E141G with CaM-binding peptide fragments of the CaV1.2 channel. Using the patch-clamp technique, we also investigated the electrophysiological effects of the mutant on CaV1.2 channel activity. We found that the maximum binding (Bmax) of CaM-E141G to the proximal COOH-terminal region, PreIQ-IQ, PreIQ, IQ, and NT (an NH2-terminal peptide) was decreased (by 17.71-59.26%) compared with that of wild-type CaM (CaM-WT). In particular, the Ca2+-dependent increase in Bmax became slower with the combination of CaM-E141G + PreIQ and IQ but faster in the case of NT. Functionally, CaM-WT and CaM-E141G at 500 nM Ca2+ decreased CaV1.2 channel activity to 24.88% and 55.99%, respectively, compared with 100 nM Ca2+, showing that the inhibitory effect was attenuated in CaM-E141G. The mean open time of the CaV1.2 channel was increased, and the number of blank traces with no channel opening was significantly decreased. Overall, CaM-E141G exhibits disrupted binding with the CaV1.2 channel and induces a flickering gating mode, which may result in the dysfunction of the CaV1.2 channel and, thus, the development of LQTS. The present study is the first to investigate the detailed binding properties and single-channel gating mode induced by the interaction of CaM-E141G with the CaV1.2 channel.


Assuntos
Canais de Cálcio Tipo L/genética , Calmodulina/genética , Síndrome do QT Longo/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio/genética , Cobaias , Humanos , Ativação do Canal Iônico/genética , Cinética , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Mutação de Sentido Incorreto/genética , Técnicas de Patch-Clamp , Peptídeos/genética , Ligação Proteica/genética , Isoformas de Proteínas/genética
11.
J Pharmacol Sci ; 144(1): 30-42, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32665128

RESUMO

To understand the mechanism underlying the regression of cardiac hypertrophy, we investigated the pathological changes after isoproterenol (ISO) withdrawal in ISO-induced cardiomyopathy models in rats and neonatal cardiomyocytes. Cardiac hypertrophy was induced in rats by two weeks of ISO administration; however, the hypertrophy did not regress after three weeks of natural maintenance after ISO administration was withdrawn (ISO-wdr group). The remaining hypertrophy in the ISO-wdr group was accompanied by a sustained increase in the level of phosphorylated Ca2+/calmodulin-dependent protein kinase II (p-CaMKII). Additionally, the increased expression levels of histone deacetylase 4 (HDAC4) and the CaV1.2 channel and amounts of CaMKII bound with HDAC4 and CaV1.2 were not recovered in the ISO-wdr group. The results in cardiomyocyte models were similar to those seen in rat models. Losartan, metoprolol or amlodipine neither ameliorated the increase in atrial natriuretic peptide nor inhibited the increase in p-CaMKII and bound CaMKII. In contrast, autocamtide-2-related inhibitor peptide, a CaMKII inhibitor, reduced these increases. This study investigated the phosphorylation status of CaMKII after hypertrophic stimulus was withdrawn for the first time and proposed that CaMKII as well as its complexes with CaV1.2 could be potential targets to achieve effective regression of cardiac hypertrophy.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Isoproterenol/efeitos adversos , Animais , Canais de Cálcio Tipo L/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Modelos Animais de Doenças , Histona Desacetilases/metabolismo , Masculino , Terapia de Alvo Molecular , Miócitos Cardíacos/metabolismo , Fosforilação , Ligação Proteica , Ratos Sprague-Dawley
12.
Plant Dis ; 104(7): 1960-1968, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32401619

RESUMO

Strawberry anthracnose caused by Colletotrichum spp. is one of the most serious diseases in the strawberry fields of China. In total, 196 isolates of Colletotrichum were obtained from leaves, stolons, and crowns of strawberry plants with anthracnose symptoms in eastern China and were characterized based on morphology, internal transcribed spacer (ITS), and ß-tubulin (TUB2) gene sequences. All 196 isolates were identified as the Colletotrichum gloeosporioides species complex. In total, 62 strains were further identified at the species level by phylogenetic analyses of multilocus sequences of ITS, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), Apn2-Mat1-2 intergenic spacer and partial mating type (ApMat), calmodulin (CAL), and TUB2. Three species from the C. gloeosporioides species complex were identified: Colletotrichum siamense, C. fructicola, and C. aenigma. Isolates of C. siamense were tolerant to high temperatures, with a significantly larger colony diameter than the other two species when grown above 36°C. The inoculation of strawberry plants confirmed the pathogenicity of all three species. C. siamense isolates resulted in the highest disease severity. The in vitro sensitivities of C. siamense and C. fructicola isolates to azoxystrobin and three demethylation-inhibitor (DMI) fungicides (difenoconazole, tebuconazole, and prochloraz) were determined. Both species were sensitive to DMI fungicides but not to azoxystrobin. C. siamense isolates were more sensitive to prochloraz, while C. fructicola isolates were more sensitive to difenoconazole and tebuconazole. The present study provides valuable information for the effective management of strawberry anthracnose.


Assuntos
Colletotrichum , Fragaria , Fungicidas Industriais , China , Filogenia , Doenças das Plantas
13.
Sensors (Basel) ; 20(10)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456330

RESUMO

Hand gesture classification and finger angle estimation are both critical for intuitive human-computer interaction. However, most approaches study them in isolation. We thus propose a dual-output deep learning model to enable simultaneous hand gesture classification and finger angle estimation. Data augmentation and deep learning were used to detect spatial-temporal features via a wristband with ten modified barometric sensors. Ten subjects performed experimental testing by flexing/extending each finger at the metacarpophalangeal joint while the proposed model was used to classify each hand gesture and estimate continuous finger angles simultaneously. A data glove was worn to record ground-truth finger angles. Overall hand gesture classification accuracy was 97.5% and finger angle estimation R 2 was 0.922, both of which were significantly higher than shallow existing learning approaches used in isolation. The proposed method could be used in applications related to the human-computer interaction and in control environments with both discrete and continuous variables.


Assuntos
Aprendizado Profundo , Dedos , Gestos , Mãos , Humanos
14.
Protein Expr Purif ; 160: 7-10, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30926461

RESUMO

Both recombinant glutathione-S-transferase (GST)-fused and GST-cleaved fragments of an L-type voltage-gated Ca2+ channel (Cav1.2) are used frequently in GST pull-down assays to investigate the interactions between regulatory proteins and the Cav1.2 channel. However, GST-fused and GST-cleaved proximal C-terminal fragments of the guinea-pig cardiac Cav1.2 channel (CT1, amino acids 1509-1791) heterologously expressed in Escherichia coli (E. coli) are difficult to be recovered in a bioactive form because they are only poorly soluble. In this study, we developed a new method to solubilize and purify CT1. GST-CT1 expressed in E. coli was extracted and treated with an inclusion body solubilization and renaturation kit. Then, after adsorption to glutathione Sepharose beads, GST-CT1 was treated with protease to release CT1. However, the cleaved CT1 was insoluble and remained attached to the beads. Therefore, CT1 was treated again with the inclusion body solubilization and renaturation kit. Using this method, GST-CT1 and CT1 were purified with a high yield. GST pull-down experiments showed a dose-dependent interaction between GST-CT1 and calmodulin (CaM), and between GST-CaM and CT1, suggesting recovered bioactivity of GST-CT1 and CT1. This protocol may also be applied to purify other insoluble GST-fused proteins.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/isolamento & purificação , Glutationa Transferase/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glutationa Transferase/química , Glutationa Transferase/genética , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
15.
Phytopathology ; 109(4): 531-541, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30130146

RESUMO

The fungus Colletotrichum fructicola (a species of C. gloeosporioides complex) causes devastating anthracnose in strawberry. Like other species of the genus Colletotrichum, it uses a composite strategy including both the biotrophic and necrotrophic processes for pathogenesis. Host-derived hormones are central regulators of immunity, among which salicylic acid (SA) is the core defense one against biotrophic and hemibiotrophic pathogens. However, the manner and timing of pathogen manipulation of SA are largely elusive in strawberry. To achieve better understanding of the early challenges that SA-mediated defense experiences during strawberry/C. fructicola interaction, dynamic changes of SA levels were followed through the high-performance liquid chromatography method. A very early burst of free SA at 1 h postinoculation (hpi) followed by a fast quenching during the next 12 h was noticed, although rhythm variations were present in two hosts. Transcriptional characterization of genes related to SA pathway in two varieties on C. fructicola inoculation revealed that these genes were differentially expressed, although they were all induced at different time points. At the same time, three types of genes encoding homologous effectors interfering with SA accumulation were found to be first inhibited but sequentially activated during the first 24 hpi. Furthermore, subcellular localization analysis suggests that CfShy1 is a weapon of C. fructicola for strawberry invasion. Based on these results, we propose that the infection strategy that C. fructicola utilizes on strawberry is specialized, which is implemented through the optimized expression of a specific set of effector genes. Transcriptional characterization of host genes supports that de novo SA biosynthesis and the free SA release from methyl salicylate might contribute equally to the intricate control of SA homeostasis in strawberry. C. fructicola manipulation of SA-dependent resistance in strawberry might be closely related to multihormonal interplay among SA, jasmonic acid, abscisic acid, and cytokinin.


Assuntos
Colletotrichum , Fragaria , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Ácido Salicílico , Colletotrichum/genética , Colletotrichum/patogenicidade , Fragaria/genética , Fragaria/microbiologia , Doenças das Plantas/microbiologia
16.
J Pharmacol Sci ; 137(2): 187-194, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30042022

RESUMO

Activity of cardiac Cav1.2 channels is enhanced by cyclic AMP-PKA signaling. In this study, we studied the effects of PKA phosphorylation on the binding of calmodulin to the fragment peptide of the proximal C-terminal tail of α1C subunit (CT1, a.a. 1509-1789 of guinea-pig). In the pull-down assay, in vitro PKA phosphorylation significantly decreased calmodulin binding to CT1 (61%) at high [Ca2+]. The phosphoresistant (CT1SA) and phosphomimetic (CT1SD) CT1 mutants, in which three PKA sites (Ser1574, 1626, 1699) were mutated to Ala and Asp, respectively, bound with calmodulin with 99% and 65% amount, respectively, compared to that of wild-type CT1. In contrast, at low [Ca2+], calmodulin-binding to CT1SD was higher (33-35%) than that to CT1SA. The distal C-terminal region of α1C (CT3, a.a. 1942-2169) is known to interact with CT1 and inhibit channel activity. CT3 bound to CT1SD was also significantly less than that to CT1SA. In inside-out patch, PKA catalytic subunit (PKAc) facilitated Ca2+ channel activity at both high and low Ca2+ condition. Altogether, these results support the hypothesis that PKA phosphorylation may enhance channel activity and attenuate the Ca2+-dependent inactivation, at least partially, by modulating calmodulin-CT1 interaction both directly and indirectly via CT3-CT1 interaction.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Domínio Catalítico , Células Cultivadas , AMP Cíclico/metabolismo , Cobaias , Fosforilação , Ligação Proteica
17.
Int J Mol Sci ; 19(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142967

RESUMO

Calmodulin (CaM) is well known as an activator of calcium/calmodulin-dependent protein kinase II (CaMKII). Voltage-gated sodium channels (VGSCs) are basic signaling molecules in excitable cells and are crucial molecular targets for nervous system agents. However, the way in which Ca2+/CaM/CaMKII cascade modulates NaV1.1 IQ (isoleucine and glutamine) domain of VGSCs remains obscure. In this study, the binding of CaM, its mutants at calcium binding sites (CaM12, CaM34, and CaM1234), and truncated proteins (N-lobe and C-lobe) to NaV1.1 IQ domain were detected by pull-down assay. Our data showed that the binding of Ca2+/CaM to the NaV1.1 IQ was concentration-dependent. ApoCaM (Ca2+-free form of calmodulin) bound to NaV1.1 IQ domain preferentially more than Ca2+/CaM. Additionally, the C-lobe of CaM was the predominant domain involved in apoCaM binding to NaV1.1 IQ domain. By contrast, the N-lobe of CaM was predominant in the binding of Ca2+/CaM to NaV1.1 IQ domain. Moreover, CaMKII-mediated phosphorylation increased the binding of Ca2+/CaM to NaV1.1 IQ domain due to one or several phosphorylation sites in T1909, S1918, and T1934 of NaV1.1 IQ domain. This study provides novel mechanisms for the modulation of NaV1.1 by the Ca2+/CaM/CaMKII axis. For the first time, we uncover the effect of Ca2+, lobe-specificity and CaMKII on CaM binding to NaV1.1.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Cálcio/química , Calmodulina/química , Canal de Sódio Disparado por Voltagem NAV1.1/química , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutationa Transferase/química , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Células HEK293 , Humanos , Cinética , Simulação de Acoplamento Molecular , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Termodinâmica
18.
J Pharmacol Sci ; 133(4): 240-246, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28391995

RESUMO

Cardiac Cav1.2 channels, coupling membrane stimulation to intracellular Ca2+ signaling, are regulated by multiple cytoplasmic factors, such as calmodulin (CaM), phosphorylation, Ca2+, ATP and intramolecular fragments of the channel. The interaction between distal and proximal C-terminal regulatory domains (DCRD and PCRD) of Cav1.2 channel is suggested to inhibit the channel activity, while PKA-mediated phosphorylation facilitates Cav1.2 channel by releasing such an interaction. Here, we report that the interaction between the distal C-terminus (CT3) and the proximal C-terminus (CT1) are inhibited by CaM in a Ca2+-dependent manner. Furthermore, CT3D (a short CT3 with DCRD truncated) interacts with CT1B (a short CT1 with EF-hand and PCRD truncated), revealing a new interaction between distal and proximal C-terminus. Ca2+/CaM inhibited the binding of CT3D to CT1B more strongly than the binding between CT3 and CT1, implying that the interaction of DCRD/PCRD (in CT3/CT1) might cooperate with the binding of CT3D to CT1B. We name the new CT1B-binding region of CT3D as CaM-competitive domain (CCD). The electrophysiological experiments show that CT3D inhibits while CT1B facilitates Cav1.2 channel activity in inside-out patches in guinea-pig ventricular myocytes. These results suggest that distal C-terminus inhibits Cav1.2 channel through modulation of the CaM-binding property of the channels.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/química , Calmodulina/metabolismo , Calmodulina/fisiologia , Fenômenos Eletrofisiológicos , Cobaias , Ventrículos do Coração/citologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Fosforilação/fisiologia , Ligação Proteica , Domínios Proteicos/fisiologia
19.
Am J Physiol Cell Physiol ; 308(8): C594-605, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25652447

RESUMO

Culture of hippocampal neurons in low-Mg(2+) medium (low-Mg(2+) neurons) results in induction of continuous seizure activity. However, the underlying mechanism of the contribution of low Mg(2+) to hyperexcitability of neurons has not been clarified. Our data, obtained using the patch-clamp technique, show that voltage-gated Na(+) channel (VGSC) activity, which is associated with a persistent, noninactivating Na(+) current (INa,P), was modulated by calmodulin (CaM) in a concentration-dependent manner in normal and low-Mg(2+) neurons, but the channel activity was more sensitive to Ca(2+)/CaM regulation in low-Mg(2+) than normal neurons. The increased sensitivity of VGSCs in low-Mg(2+) neurons was partially retained when CaM12 and CaM34, CaM mutants with disabled binding sites in the N or C lobe, were used but was diminished when CaM1234, a CaM mutant in which all four Ca(2+) sites are disabled, was used, indicating that functional Ca(2+)-binding sites from either lobe of CaM are required for modulation of VGSCs in low-Mg(2+) neurons. Furthermore, the number of neurons exhibiting colocalization of CaM with the VGSC subtypes NaV1.1, NaV1.2, and NaV1.3 was significantly higher in low- Mg(2+) than normal neurons, as shown by immunofluorescence. Our main finding is that low-Mg(2+) treatment increases sensitivity of VGSCs to Ca(2+)/CaM-mediated regulation. Our data reveal that CaM, as a core regulating factor, connects the functional roles of the three main intracellular ions, Na(+), Ca(2+), and Mg(2+), by modulating VGSCs and provides a possible explanation for the seizure discharge observed in low-Mg(2+) neurons.


Assuntos
Cálcio/farmacologia , Calmodulina/farmacologia , Hipocampo/citologia , Magnésio/farmacologia , Convulsões/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Trifosfato de Adenosina/metabolismo , Ondas Encefálicas , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Técnicas de Patch-Clamp , Tetrodotoxina/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
20.
Biochem Biophys Res Commun ; 460(3): 813-8, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25824040

RESUMO

The activity of Cav1.2 Ca(2+) channels is maintained in the presence of calmodulin and ATP, even in cell-free patches, and thus a channel ATP-binding site has been suggested. In this study, we examined whether other nucleotides, such as GTP, UTP, CTP, ADP and AMP, could be substituted for ATP in guinea-pig ventricular myocytes. We found that all the nucleotides tested could re-prime the Ca(2+) channels in the presence of 1 µM calmodulin in the inside-out mode. The order of efficacy was ATP > GTP > UTP > ADP > CTP ≈ AMP. Thus, the presumed nucleotide-binding site in the channel seemed to favor a purine rather than pyrimidine base and a triphosphate rather than a di- or mono-phosphate group. Furthermore, a high concentration (10 mM) of GTP, UTP, CTP, ADP and AMP had inhibitory effects on the channel activity. These results provide information on the putative nucleotide-binding site(s) in Cav1.2 Ca(2+) channels.


Assuntos
Canais de Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Músculo Liso Vascular/metabolismo , Nucleotídeos/fisiologia , Animais , Cobaias , Ventrículos do Coração/citologia , Músculo Liso Vascular/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA