Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843205

RESUMO

Vegetation construction is a key process for restoring and rehabilitating degraded ecosystems. However, the spatial pattern and process of native plants colonized by different vegetation restoration methods in semi-arid sandy land are poorly understood. In this study, two artificial vegetation restoration patterns (P1: row belt restoration pattern of Salix matsudana with low coverage; P2: a living sand barrier pattern of Caryopteris mongolica with low coverage) were selected to analyze the spatial distribution pattern and interspecific association of the colonizing native shrubs. The effects of the two restoration models on the spatial patterns of the main native semi-shrubs of the colonies (i.e., Artemisia ordosica and Corethrodendron lignosum var. leave) were studied using single variable and bivariate transformation point pattern analysis based on Ripley's L function. Our results showed that two restoration patterns significantly facilitated the establishment of A. ordosica and C. lignosum var. leave, with their coverage reaching 17.04% and 22.62%, respectively. In P1, the spatial distribution pattern of colonial shrubs tended to be a random distribution, and there was no spatial correlation between the species. In P2, the colonial shrub aggregation distribution was more dominant, and with the increase in scale, the aggregation distribution changed to a random distribution, whereas the interspecific association was negatively correlated. The differences in the spatial distribution patterns of colonized native semi-shrubs in these two restoration patterns could be related to the life form of planted plants, configuration methods, biological characteristics of colonized plants, and intra- and interspecific relationships of plants. Our results demonstrated that the nurse effect of artificially planted vegetation in the early stage of sand ecological restoration effectively facilitated the near-natural succession of communities. These findings have important implications for ecological restoration of degraded sandy land in the semi-arid region of northern China.


Assuntos
Ecossistema , China , Conservação dos Recursos Naturais/métodos , Artemisia/crescimento & desenvolvimento , Artemisia/fisiologia , Salix/crescimento & desenvolvimento , Recuperação e Remediação Ambiental/métodos , Areia
2.
Plant Methods ; 20(1): 76, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790046

RESUMO

BACKGROUND: Isolated microspore culture is a useful biotechnological technique applied in modern plant breeding programs as it can produce doubled haploid (DH) plants and accelerate the development of new varieties. Furthermore, as a single-cell culture technique, the isolated microspore culture provides an excellent platform for studying microspore embryogenesis. However, the reports on isolated microspore culture are rather limited in rice due to the low callus induction rate, poor regeneration capability, and high genotypic dependency. The present study developed an effective isolated microspore culture protocol for high-frequency androgenesis in four japonica rice genotypes. Several factors affecting the isolated microspore culture were studied to evaluate their effects on callus induction and plantlet regeneration. RESULTS: Low-temperature pre-treatment at 4 â„ƒ for 10-15 days could effectively promote microspore embryogenesis in japonica rice. A simple and efficient method was proposed for identifying the microspore developmental stage. The anthers in yellow-green florets located on the second type of primary branch on the rice panicle were found to be the optimal stage for isolated microspore culture. The most effective induction media for callus induction were IM2 and IM3, depending on the genotype. The optimal concentration of 2, 4-D in the medium for callus induction was 1 mg/L. Callus induction was negatively affected by a high concentration of KT over 1.5 mg/L. The differentiation medium suitable for japonica rice microspore callus comprised 1/2 MS, 2 mg/L 6-BA, 0.5 mg/L NAA, 30 g/L sucrose, and 6 g/L agar. The regeneration frequency of the four genotypes ranged from 61-211 green plantlets per 100 mg calli, with Chongxiangjing showing the highest regeneration frequency. CONCLUSIONS: This study presented an efficient protocol for improved callus induction and green plantlet regeneration in japonica rice via isolated microspore culture, which could provide valuable support for rice breeding and genetic research.

3.
Front Plant Sci ; 15: 1409493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170789

RESUMO

Introduction: Understanding how human activities affect biodiversity is needed to inform systemic policies and targets for achieving sustainable development goals. Shallow tillage to remove Artemisia ordosica is commonly conducted in the Mu Us Desert. However, the impacts of shallow tillage on plant community species diversity, phylogenetic structure, and community assembly processes remain poorly understood. Methods: This study explores the effects of shallow tillage on species diversity including three a-diversity and two b-diversity indicators, as well as phylogenetic structure [phylogenetic diversity (PD), net relatedness index (NRI), and nearest taxon index (NTI)]. Additionally, this research analyzes the effects of shallow tillage on the community assembly process. Results and discussion: The results showed that the a-diversity index, b-diversity index, and PD of the shallow tillage (ST) communities were significantly higher than those of the non-shallow tillage (NT) communities, and the phylogenetic structures of both the ST and NT communities tended to be differentiated, with competitive exclusion being the main mechanism of plant assembly. However, shallow tillage increased the relative importance of the stochastic processes dominated by dispersal limitation, mitigating plant competition in the communities. This conclusion was supported by the Raup-Crick difference index-based analysis. Conclusion: Therefore, for the ecological restoration of the Mu Us Desert, species with adaptability and low niche overlap should be selected to increase the utilization efficiency of the environmental resources. The results of this study provide a foundation for policy development for ecosystem management and restoration in the Mu Us Desert.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA