Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cereb Cortex ; 33(7): 3985-3995, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36030387

RESUMO

Functional organization of the human cerebral cortex is highly constrained by underlying brain structures, but how functional activity is associated with different brain structures during development is not clear, especially at the neonatal stage. Since long-range functional connectivity is far from mature in the dynamically developing neonatal brain, it is of great scientific significance to investigate the relationship between different structural and functional features at the local level. To this end, for the first time, correlation and regression analyses were performed to examine the relationship between cortical morphology, cortical myelination, age, and local brain functional activity, as well as functional connectivity strength using high-resolution structural and resting-state functional MRI data of 177 neonates (29-44 postmenopausal weeks, 98 male and 79 female) from both static and dynamic perspectives. We found that cortical myelination was most strongly associated with local brain functional activity across the cerebral cortex than other cortical structural features while controlling the age effect. These findings suggest the crucial role of cortical myelination in local brain functional development at birth, providing valuable insights into the fundamental biological basis of functional activity at this early developmental stage.


Assuntos
Córtex Cerebral , Imageamento por Ressonância Magnética , Recém-Nascido , Masculino , Humanos , Feminino , Córtex Cerebral/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
2.
Ecotoxicol Environ Saf ; 206: 111325, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979721

RESUMO

The problem of heavy metal pollution in sediments attracts increasing attention with the process of industrialization. In this study, a novel sediments amendment granular activated carbon (GAC)-supported titanium dioxide nanoparticles (GATN) was synthesized to amend copper (Cu)-contaminated sediments. The effect of the amendments on the potential mobility and bioavailability of Cu was evaluated by the concentration of Cu in the overlying water and the chemical speciations of Cu in sediments. After 35 days of incubation, GATN and GAC were separated from the GATN-amended sediments and the GAC-amended sediments. The European Community Bureau of Reference (BCR) sequence extraction procedure was performed on the separated sediments. Compared with the control group, the addition of 20% GATN amended sediments for 35 days, the Cu concentration in the overlying water decreased by 90.75%. Compared with original sediments, the exchangeable fraction and reducible fraction of Cu decreased from 42.30% to 17.36%-3.63% and 6.57%, respectively, and the oxidizable fraction and residual fraction of Cu increased from 13.57% to 26.77%-33.21% and 56.58%, respectively. The potential mobility and bioavailability of Cu were significantly reduced. According to the BCR sequence extraction results of the remaining sediments after the separation of the GATN, the Cu adsorbed on the GATN surface is mainly an oxidizable fraction, which is generated by the complexation reaction of hydroxyl (-OH) and Cu2+. Meanwhile, the present of GATN also can enhance the remediation capacity of sediments, which plays an important role during the amendment process. The pH was measured after GATN-amended sediments adding. Results showed that GATN improved their remediation capacity of sediments by optimizing the pH in sediments. The enzyme activity-experiment indicated that GATN effectively reduces the biological toxicity of Cu in Cu-contaminated sediments. Results verified that GATN, as a sediments amendment, has good application potential.


Assuntos
Cobre/química , Recuperação e Remediação Ambiental/métodos , Nanopartículas/química , Poluentes do Solo/química , Titânio/química , Adsorção , Disponibilidade Biológica , Carvão Vegetal , Cobre/análise , Poluição Ambiental , Sedimentos Geológicos , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Poluentes do Solo/análise
3.
Environ Technol ; 44(13): 1890-1902, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34882064

RESUMO

In recent years, there has been a growing concern about heavy metal contamination in sediments. In this study, iron-based granular biochar (MGB) is prepared to remediate Cu and Pb contaminated sediments. Characterizations via scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) show that the rough surface of MGB with abundant pore structures and a large number of oxygen-containing functional groups that facilitate stabilization of Cu and Pb in sediments. Potential mobility and bioavailability of Cu and Pb are investigated using BCR sequential extraction in the 35 day remediation experiment. The XPS results indicate that FeOOH and C-OH play a crucial part in stabilizing heavy metals. Large affinity of FeOOH for Pb allows it to occupy a proportion in F2 while C-OH is attractive to Cu. Changes of pH, organic matter (OM), and available phosphorus (AP) in sediments after adding MGB as well as the relationship between changes and the stable solidification of Cu and Pb are explored. The stable solidification of heavy metals effectively reduces the available phosphorus in sediments. Magnetic and particle properties of the material are used to reduce the impact of MGB aging on sediment environment and separate it from the remediated sediment. Finally, 3% of MGB significantly enhanced the sediment catalase activity in the biological enzyme activity experiment. All findings indicate that MGB is a green and environmentally friendly sediment remediation material with satisfactory potential in synergistically stabilizing heavy metals and phosphorus.Highlights The complexation of FeOOH with Pb on the surface of MGB fixes it to the reduced stateThe C-OH on the surface of MGB is more attractive to Cu than PbMGB effectively mitigates the release of bioavailable phosphorus from sediments to overlying water.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Cobre/química , Chumbo , Ferro , Metais Pesados/química , Fósforo , Sedimentos Geológicos/química
4.
Phytomedicine ; 120: 155008, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37651755

RESUMO

BACKGROUND: Kumquat decoction is a traditional Chinese medicine formula and has been widely used to alleviate the coronavirus disease 2019 (COVID-19)-related cough in China. However, the effectiveness and safety of kumquat decoction remain unclear. PURPOSE: To assess the effectiveness and safety of kumquat decoction for COVID-19-related cough. STUDY DESIGN: A multicentre, prospective observational study. METHODS: We enrolled consecutive patients with mild-to-moderate COVID-19 from December 31, 2022, to January 3, 2023, during the Omicron phase in Yangshuo County, China. The primary outcome was the time from study baseline to sustained cough resolution by the last follow-up day on January 31, 2023. The effectiveness was evaluated by Cox proportional hazards models based on propensity score analyses. The secondary outcomes were the resolution of cough and other COVID-19-related symptoms by Days 3, 5, and 7. RESULTS: Of 1434 patients, 671 patients were excluded from the analysis of cough resolution. Among the remaining 763 patients, 481 (63.04%) received kumquat decoction, and 282 (36.96%) received usual care. The median age was 38.0 (interquartile range [IQR] 29.0, 50.0) years, and 55.7% were women. During a median follow-up of 7.000 days, 68.2% of patients in the kumquat group achieved sustained cough resolution (93.77 per 1000 person-days) compared to 39.7% in the usual care group (72.94 per 1000 person-days). The differences in restricted mean survival time (RMST) (kumquat decoction minus usual care group) for cough resolution were -0.742 days (95% CI, -1.235 to -0.250, P = 0.003) on Day 7. In the main analysis using propensity-score matching, the adjusted hazard ratio (HR) for cough resolution (kumquat decoction vs. usual care group) was 1.94 (95% CI, 1.48 to 2.53, P < 0.001). Similar findings were found in multiple sensitivity analyses. In addition, the use of kumquat decoction was associated with the resolution of cough, and a stuffy nose on Days 5 and 7, as well as the resolution of sore throat on Day 7 following medication. CONCLUSION: In this study among patients with COVID-19-related cough, receiving kumquat decoction was associated with an earlier resolution of cough symptoms.


Assuntos
COVID-19 , Rutaceae , Humanos , Feminino , Masculino , COVID-19/complicações , Tosse/tratamento farmacológico , SARS-CoV-2
5.
Environ Sci Pollut Res Int ; 29(49): 74725-74741, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35639326

RESUMO

In this study, we proposed an advanced oxidation process of pyrite (FeS2) and peroxymonosulfate (PMS) and prepared a modified polyaluminum chloride biochar (P-BC). The motivation is to use the combination of FeS2 + PMS + P-BC to improve waste activated sludge (WAS) dewaterability. The method to improve the sludge dewatering effect with the combination of FeS2 + PMS + P-BC is as follows: in the first step, pour 0.75 g/g TSS FeS2 and 0.6 g/g TSS PMS into the sludge, and stir for 15 min. Then, add P-BC and stir for 5 min; complete the entire WAS processing process. The vacuum filtration test was used to evaluate the dehydration effect. The water content (Wc) and specific resistance to filtration (SRF) of the raw sludge can be reduced from the original values of 92% and 2.36 × 1013 m/kg to 67% and 9.89 × 1011 m/kg, respectively. The results showed that the combination of FeS2 + PMS + P-BC can effectively improve the sludge dewatering effect through oxidation. A laser particle size analyzer is used to observe changes in sludge particle size. The median diameter of sludge particles increased from 55.37 to 64.56 µm. A zeta analyzer to is used observe changes in sludge zeta potential. The zeta potential of sludge particles increased from - 15.8 to 0.4 mV. In the analysis of extracellular polymeric substances (EPS) of sludge, it was found that protein (PN) and polysaccharide (PS) in EPS decreased significantly. To further analyze the phenomenon of PN and PS drop, excitation-emission-matrix spectra (3D-EEM) was used. To observe the changes of sludge functional group, X-ray photoelectron spectroscopy was used. It was found that FeS2 + PMS + P-BC can destroy the functional groups of sludge, such as O-H, C-C, and O═C-NH- related to proteins and polysaccharides.


Assuntos
Filtração , Esgotos , Carvão Vegetal , Ferro , Peróxidos , Polissacarídeos/análise , Esgotos/química , Sulfetos , Eliminação de Resíduos Líquidos/métodos , Água/química
6.
Brain Struct Funct ; 227(6): 2181-2190, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35668328

RESUMO

Individual variability in cognition and behavior results from the differences in brain structure and function that have already emerged before birth. However, little is known about individual variability in brain functional architecture at local level in neonates which is of great significance to explore owing to largely undeveloped long-range functional connectivity and segregated functions in early brain development. To address this, resting-state fMRI data of 163 neonates ranged from 32 to 45 postconceptional weeks (PCW) were used in this study, and various functional features including functional parcellation similarity, local brain activity and local functional connectivity were used to characterize individual functional variability. We observed significantly higher local functional individual variability in superior parietal, sensorimotor, and visual cortex, and lower variability in the frontal, insula and cingulate cortex relative to other regions within each hemisphere. The mean local functional individual variability significantly increased with age, and the age effect was found larger in brain regions such as the occipital, temporal, prefrontal and parietal cortex. Our findings promote the understanding of brain plasticity and regional differential maturation in the early stage.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Giro do Cíngulo , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Lobo Parietal
7.
Front Comput Neurosci ; 16: 877204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35591883

RESUMO

Recently, movie-watching fMRI has been recognized as a novel method to explore brain working patterns. Previous researchers correlated natural stimuli with brain responses to explore brain functional specialization by "reverse correlation" methods, which were based on within-group analysis. However, what external stimuli drove significantly different brain responses in two groups of different subjects were still unknown. To address this, sliding time windows technique combined with inter-Subject functional correlation (ISFC) was proposed to detect movie events with significant group differences between autism spectrum disorder (ASD) and typical development (TD) subjects. Then, using inter-Subject correlation (ISC) and ISFC analysis, we found that in three movie events involving character emotions, the ASD group showed significantly lower ISC in the middle temporal gyrus, temporal pole, cerebellum, caudate, precuneus, and showed decreased functional connectivity between large scale networks than that in TD. Under the movie event focusing on objects and scenes shot, the dorsal and ventral attentional networks of ASD had a strong synchronous response. Meanwhile, ASD also displayed increased functional connectivity between the frontoparietal network (FPN) and dorsal attention network (DAN), FPN, and sensorimotor network (SMN) than TD. ASD has its own unique synchronous response rather than being "unresponsive" in natural movie-watching. Our findings provide a new method and valuable insight for exploring the inconsistency of the brain "tick collectively" to same natural stimuli. This analytic approach has the potential to explore pathological mechanisms and promote training methods of ASD.

8.
Biomimetics (Basel) ; 7(4)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36412723

RESUMO

Current deep-learning-based cervical cell classification methods suffer from parameter redundancy and poor model generalization performance, which creates challenges for the intelligent classification of cervical cytology smear images. In this paper, we establish a method for such classification that combines transfer learning and knowledge distillation. This new method not only transfers common features between different source domain data, but also realizes model-to-model knowledge transfer using the unnormalized probability output between models as knowledge. A multi-exit classification network is then introduced as the student network, where a global context module is embedded in each exit branch. A self-distillation method is then proposed to fuse contextual information; deep classifiers in the student network guide shallow classifiers to learn, and multiple classifier outputs are fused using an average integration strategy to form a classifier with strong generalization performance. The experimental results show that the developed method achieves good results using the SIPaKMeD dataset. The accuracy, sensitivity, specificity, and F-measure of the five classifications are 98.52%, 98.53%, 98.68%, 98.59%, respectively. The effectiveness of the method is further verified on a natural image dataset.

9.
Environ Sci Pollut Res Int ; 29(14): 20333-20346, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34731422

RESUMO

Freeze-thaw (F/T) and electrochemistry both are environment-friendly and efficient sludge treatment technologies. In this study, the sludge samples were frozen at - 15 °C, and 20% g/gTss activated carbon (AC) was added to the dissolved sludge. Finally, the uniformly mixed sludge was treated at a voltage of 15 V for 25 min. During the experiment, the effect of F/T on the floc structure was analyzed by a laser particle analyzer and scanning electron microscope. F/T treatment improved the dewatering performance of the sludge and promoted the aggregation of sludge flocs into larger particles either. At the same time, the median diameter (D50) increased from 45.27 to 128.94 µm. AC was added to the thawed sludge solution before electrochemical treatment (EP). The conductivity of AC enhanced the effect of EP, thereby cracking the sludge flocs. Therefore, the three-dimensional excitation-emission matrix (3D-EEM) intensity of tightly bound extracellular polymeric substances (TB-EPS) decreased significantly. The protein in TB-EPS decreased from 54 to 33%, and the D50 was also reduced to 105.3 µm. The final specific resistance of filtration and water content were reduced by 96.39% and 32.17%, respectively. The dehydrated cake elemental analysis showed that increased AC improved the sludge cake's combustion efficiency significantly. Moreover, the preliminary economic analysis indicated that the cost of this research was low, which implied the potential application value of combined treatment.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Carvão Vegetal , Matriz Extracelular de Substâncias Poliméricas , Filtração , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Água/química
10.
Chemosphere ; 306: 135484, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35810855

RESUMO

An electro-coagulation (EC) process combined with added free nitrous acid (FNA) improves sludge dewaterability. Under optimal conditions(EC voltage of 25 V, EC process time of 60 min, FNA dosage of 1.13 mg/L, pH value of 4.5), specific resistance to filtration (SRF) and water content (WC) was decreased by 89.57%, and 18.90%respectively. The EC process disrupted the sludge structure, reducing sludge particles' size (D50) from 59.5 to 50.5 µm. After adding FNA, the sludge cells lysed, and the DNA concentrations and soluble chemical oxygen demand (SCOD) increased from 6.07 µg/ml and 29 mg/L to 364 µg/ml and 588 mg/L, respectively. The conversion of Fe(II) to Fe(III) was enhanced. The addition of FNA after EC further improved the sludge dewaterability. Combined conditioning using EC and FNA can effectively destroy tightly bound extracellular polymeric substances (TB-EPS) and release bound water. In addition, the pH value is kept low, which benefits sludge dewaterability and the removal of heavy metals. The concentrations of Zn and Mn in the sludge cake were reduced by 92.3% and 69.0%, respectively. The Bureau of Reference (BCR) sequential extraction method showed increases in the percentages of the residual fractions of Zn and Mn, showing that EC combined with FNA is an efficient and versatile means of sludge conditioning.


Assuntos
Esgotos , Águas Residuárias , Compostos Férricos , Filtração , Ácido Nitroso , Esgotos/química , Eliminação de Resíduos Líquidos , Água/química
11.
Sci Total Environ ; 741: 139962, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32563130

RESUMO

After much effort, the remediation of heavy metal contaminated sediments still remains physically hard and technically challenging issue to resolve. In this study, granular activated carbon-supported titanium dioxide nanoparticles (GAC-TiO2 NPs) are synthesized to remedy heavy metal copper (Cu) contaminated sediments. The concentration and chemical speciation of Cu in overlying water, interstitial water and contaminated sediments are fully assessed to examine the remediation effect of GAC-TiO2 NPs. The GAC-TiO2 NPs are separated from GAC-TiO2 NPs-remedied sediments and characterized by X-ray photoelectron spectra (XPS), which reveals the mechanism of GAC-TiO2 NPs remedy Cu Contaminated sediments. The results show that after 35 days adding 20% GAC-TiO2 NPs to contaminated sediments, the Cu concentration in the overlying water and interstitial water decreases 89.47% and 83.52%, respectively, and the exchangeable fraction (F-1) of Cu in sediments decreases from 43.91% to 7.49%. The percentage of residual fraction (F-4) increases sharply from 42.79% to 80.30%. XPS results show that hydroxyl (-OH) plays an important role in the remediation process. The synergistic effects of pH, phosphorus concentration and organic matter (OM) content on the remediation effect are explored. When the pH value is 8, phosphorus concentration is 0.32 mg/L and OM content is 151.2 g/kg, adding 20% GAC-TiO2 NPs achieves the best remediation effect on Cu contaminated sediment. Biological enzyme-activity experiments prove that GAC-TiO2 NPs not only reduce the bioavailability and biotoxicity of Cu, but also effectively suppress the negative effects of granular activated carbon (GAC) on enzyme activities. All these results indicate that GAC-TiO2 NPs is an environmentally friendly remediation material for Cu contaminated sediments with high-potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA