Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Breast Cancer Res ; 26(1): 103, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890750

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) represents a highly aggressive subset of breast malignancies characterized by its challenging clinical management and unfavorable prognosis. While TFAP2A, a member of the AP-2 transcription factor family, has been implicated in maintaining the basal phenotype of breast cancer, its precise regulatory role in TNBC remains undefined. METHODS: In vitro assessments of TNBC cell growth and migratory potential were conducted using MTS, colony formation, and EdU assays. Quantitative PCR was employed to analyze mRNA expression levels, while Western blot was utilized to evaluate protein expression and phosphorylation status of AKT and ERK. The post-transcriptional regulation of TFAP2A by miR-8072 and the transcriptional activation of SNAI1 by TFAP2A were investigated through luciferase reporter assays. A xenograft mouse model was employed to assess the in vivo growth capacity of TNBC cells. RESULTS: Selective silencing of TFAP2A significantly impeded the proliferation and migration of TNBC cells, with elevated TFAP2A expression observed in breast cancer tissues. Notably, TNBC patients exhibiting heightened TFAP2A levels experienced abbreviated overall survival. Mechanistically, TFAP2A was identified as a transcriptional activator of SNAI1, a crucial regulator of epithelial-mesenchymal transition (EMT) and cellular proliferation, thereby augmenting the oncogenic properties of TFAP2A in TNBC. Moreover, miR-8072 was unveiled as a negative regulator of TFAP2A, exerting potent inhibitory effects on TNBC cell growth and migration. Importantly, the tumor-suppressive actions mediated by the miR-8072/TFAP2A axis were intricately associated with the attenuation of AKT/ERK signaling cascades and the blockade of EMT processes. CONCLUSIONS: Our findings unravel the role and underlying molecular mechanism of TFAP2A in driving tumorigenesis of TNBC. Targeting the TFAP2A/SNAI1 pathway and utilizing miR-8072 as a suppressor represent promising therapeutic strategies for treating TNBC.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Fatores de Transcrição da Família Snail , Fator de Transcrição AP-2 , Neoplasias de Mama Triplo Negativas , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , MicroRNAs/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Feminino , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação para Baixo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Inflamm Res ; 73(1): 65-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062164

RESUMO

BACKGROUND: Atherosclerosis, characterized by abnormal arterial lipid deposition, is an age-dependent inflammatory disease and contributes to elevated morbidity and mortality. Senescent foamy macrophages are considered to be deleterious at all stages of atherosclerosis, while the underlying mechanisms remain largely unknown. In this study, we aimed to explore the senescence-related genes in macrophages diagnosis for atherosclerotic plaque progression. METHODS: The atherosclerosis-related datasets were retrieved from the Gene Expression Omnibus (GEO) database, and cellular senescence-associated genes were acquired from the CellAge database. R package Limma was used to screen out the differentially expressed senescence-related genes (DE-SRGs), and then three machine learning algorithms were applied to determine the hub DE-SRGs. Next, we established a nomogram model to further confirm the clinical significance of hub DE-SRGs. Finally, we validated the expression of hub SRG ABI3 by Sc-RNA seq analysis and explored the underlying mechanism of ABI3 in THP-1-derived macrophages and mouse atherosclerotic lesions. RESULTS: A total of 15 DE-SRGs were identified in macrophage-rich plaques, with five hub DE-SRGs (ABI3, CAV1, NINJ1, Nox4 and YAP1) were further screened using three machine learning algorithms. Subsequently, a nomogram predictive model confirmed the high validity of the five hub DE-SRGs for evaluating atherosclerotic plaque progression. Further, the ABI3 expression was upregulated in macrophages of advanced plaques and senescent THP-1-derived macrophages, which was consistent with the bioinformatics analysis. ABI3 knockdown abolished macrophage senescence, and the NF-κB signaling pathway contributed to ABI3-mediated macrophage senescence. CONCLUSION: We identified five cellular senescence-associated genes for atherogenesis progression and unveiled that ABI3 might promote macrophage senescence via activation of the NF-κB pathway in atherogenesis progression, which proposes new preventive and therapeutic strategies of senolytic agents for atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Transdução de Sinais
3.
J Transl Med ; 21(1): 203, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932401

RESUMO

BACKGROUND: The incidence of pediatric inflammatory bowel disease (PIBD) has been steadily increasing globally. Delayed diagnosis of PIBD increases the risk of complications and contributes to growth retardation. To improve long-term outcomes, there is a pressing need to identify novel markers for early diagnosis of PIBD. METHODS: The candidate biomarkers for PIBD were identified from the GSE117993 dataset by two machine learning algorithms, namely LASSO and mSVM-RFE, and externally validated in the GSE126124 dataset and our PIBD cohort. The role of ficolin-1 (FCN1) in PIBD and its association with macrophage infiltration was investigated using the CIBERSORT method and enrichment analysis of the single-cell dataset GSE121380, and further validated using immunoblotting, qRT-PCR, and immunostaining in colon biopsies from PIBD patients, a juvenile murine DSS-induced colitis model, and THP-1-derived macrophages. RESULTS: FCN1 showed great diagnostic performance for PIBD in an independent clinical cohort with the AUC of 0.986. FCN1 expression was upregulated in both colorectal biopsies and blood samples from PIBD patients. Functionally, FCN1 was associated with immune-related processes in the colonic mucosa of PIBD patients, and correlated with increased proinflammatory M1 macrophage infiltration. Furthermore, single-cell transcriptome analysis and immunostaining revealed that FCN1 was almost exclusively expressed in macrophages infiltrating the colonic mucosa of PIBD patients, and these FCN1+ macrophages were related to hyper-inflammation. Notably, proinflammatory M1 macrophages derived from THP-1 expressed high levels of FCN1 and IL-1ß, and FCN1 overexpression in THP-1-derived macrophages strongly promoted LPS-induced activation of the proinflammatory cytokine IL-1ß via the NLRP3-caspase-1 axis. CONCLUSIONS: FCN1 is a novel and promising diagnostic biomarker for PIBD. FCN1+ macrophages enriched in the colonic mucosa of PIBD exhibit proinflammatory phenotypes, and FCN1 promotes IL-1ß maturation in macrophages via the NLRP3-caspase-1 axis.


Assuntos
Doenças Inflamatórias Intestinais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/patologia , Macrófagos/metabolismo , Caspase 1/metabolismo , Biomarcadores/metabolismo
4.
BMC Cancer ; 23(1): 1241, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104097

RESUMO

BACKGROUND: Prostate cancer is a common solid tumor that affects a significant number of men worldwide. Conventional androgen deprivation therapy (ADT) increases the risk of developing castration-resistant prostate cancer (CRPC). Effective clinical management of patients with CRPC is challenging due to the limited understanding. METHODS: In this study, transcriptomic and metabolomic profiles of androgen-dependent prostate cancer cell line LNCaP and the androgen-independent cells developed from LNCaP cells (LNCaP-ADR) were investigated using RNA-sequencing and LC-MS/MS, respectively. The differentially expressed genes and metabolites were analyzed, and integrative analysis of transcriptomic and metabolomic data was further conducted to obtain a comprehensive understanding of the metabolic characteristics in LNCaP-ADR cells. Quantitative real-time PCR (QPCR) was employed to ascertain the mRNA expression levels of the selected differentially expressed genes. RESULTS: The arginine and proline metabolism pathway was identified as a commonly altered pathway at both the transcriptional and metabolic levels. In the LNCaP-ADR cells, significant upregulation was observed for metabolites including 5-Aminopentanoic acid, L-Arginine, L-Glutamic acid, N-Acetyl-L-alanine, and Pyrrole-2-carboxylic acid at the metabolic level. At the transcriptional level, MAOA, ALDH3A2, ALDH2, ARG1, CKMT2, and CNDP1 were found to be significantly upregulated in the LNCaP-ADR cells. Gene set enrichment analysis (GSEA) identified various enriched gene sets in the LNCaP-ADR cells, encompassing inflammatory response, 9plus2 motile cilium, motile cilium, ciliary plasm, cilium or flagellum-dependent cell motility, cilium movement, cilium, response to endoplasmic reticulum stress, PTEN DN.V1 DN, SRC UP.V1 UP, IL15 UP.V1 DN, RB DN.V1 DN, AKT UP MTOR DN.V1 UP, VEGF A UP.V1 UP, and KRAS.LUNG.BREAST UP.V1 UP. CONCLUSIONS: These findings highlight the substantial association between the arginine and proline metabolism pathway and CRPC, emphasizing the need to prioritize strategies that target dysregulated metabolites and differentially expressed genes as essential interventions in the clinical management of CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Androgênios/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antagonistas de Androgênios/uso terapêutico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Perfilação da Expressão Gênica , Transcriptoma , Arginina/genética , Prolina/genética , Linhagem Celular Tumoral , Receptores Androgênicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Aldeído-Desidrogenase Mitocondrial/genética
5.
BMC Pediatr ; 23(1): 255, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37217894

RESUMO

OBJECTIVE: Treatment with adrenocorticotropic hormone (ACTH) or a corticosteroid is the first choice for infantile spasms (IS), and vigabatrin is the first choice for children with tuberous sclerosis. Although corticosteroids may be also effective against IS and IS-related Lennox-Gastaut syndrome (LGS), the use of dexamethasone (DEX), a kind of corticosteroid, for these diseases has been rarely reported. This retrospective study aimed to evaluate the efficacy and tolerability of DEX for the treatment of IS and IS-related LGS. METHODS: Patients diagnosed as having IS (including patients whose condition evolved to LGS after the failure of early treatment) in our hospital between May 2009 and June 2019 were treated with dexamethasone after failure of prednisone treatment. The oral dose of DEX was 0.15-0.3 mg/kg/d. Thereafter, the clinical efficacy, electroencephalogram (EEG) findings, and adverse effects were observed every 4-12 weeks depending on the individual patient's response. Then, the efficacy and safety of DEX in the treatment of IS and IS-related LGS were retrospectively evaluated. RESULTS: Among 51 patients (35 cases of IS; 16 cases of IS-related LGS), 35 cases (68.63%) were identified as responders to DEX treatment, comprising 20 cases (39.22%) and 15 cases (29.41%) with complete control and obvious control, respectively. To discuss the syndromes individually, complete control and obvious control were achieved in 14/35 and 9/35 IS cases and in 6/16 and 6/16 IS-related LGS cases, respectively. During DEX withdrawal, 11 of the 20 patients with complete control relapsed (9/14 IS; 2/6 LGS). The duration of dexamethasone treatment (including weaning) in most of the 35 responders was less than 1 year. However, 5 patients were treated with prolonged, low-dose maintenance therapy, which continued for more than 1.5 years. These 5 patients showed complete control, and 3 patients had no recurrence. Except for one child who died of recurrent asthma and epileptic status 3 months after stopping DEX, there were no serious or life-threatening adverse effects during DEX treatment. CONCLUSION: Oral DEX is effective and tolerable for IS and IS-related LGS. all LGS patients were evolved from IS in this study. The conclusion may not apply to patients with other etiology and courses of LGS. Even when prednisone or ACTH is failed, DEX may still be considered as a treatment option. For children who respond to DEX but do not show complete control after 6 months of treatment, prolonged treatment with low-dose DEX administered in the morning might be considered.


Assuntos
Síndrome de Lennox-Gastaut , Espasmos Infantis , Criança , Humanos , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/diagnóstico , Síndrome de Lennox-Gastaut/tratamento farmacológico , Síndrome de Lennox-Gastaut/diagnóstico , Estudos Retrospectivos , Prednisona/uso terapêutico , Hormônio Adrenocorticotrópico/uso terapêutico , Corticosteroides/uso terapêutico , Eletroencefalografia , Dexametasona/efeitos adversos , Anticonvulsivantes/uso terapêutico
6.
Can J Infect Dis Med Microbiol ; 2023: 5516408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771844

RESUMO

Background: Malaria is a global public health concern, mainly occurring in sub-Saharan Africa. Children infected with malaria are more likely to develop severe disease, which can be fatal. During COVID-19 in 2020, diagnosing and treating malaria became difficult. We analyzed the clinical characteristics and laboratory indicators of children with severe malaria in Benin to provide important information for designing effective prevention and treatment strategies to manage pediatric cases. Methods: Clinical characteristics of pediatric patients with severe malaria admitted to two hospitals in Benin (Central Hospital of Lokossa and Regional Hospital of Natitingou, located ∼650 kilometers apart) were collected from January to December 2020. Patients were grouped according to age (group A: 4-12 months old, group B: 13-36 months old, and group C: 37-60 months old), and clinical and laboratory indicators were compared. The incidences of severe pediatric malaria in both hospitals in 2020 were calculated. Inclusion, exclusion, and blood transfusion criteria were identified. Results: We analyzed 236 pediatric cases. The main clinical symptoms among all patients were severe anemia, vomiting, prostration, poor appetite, dysphoria, and dyspnea. Over 50% of patients in group A experienced vomiting and severe anemia. Most patients in group B had severe anemia and prostration. Delirium affected significantly more patients in group C than in groups A and B. In group C, the hemoglobin and hematocrit levels were significantly higher (p < 0.05), and the leukocyte count was significantly lower (p < 0.01) than in groups A and B. Parasitemia was significantly higher in group C than in group A (p < 0.01). Twelve deaths occurred. Conclusions: Severe pediatric malaria is seasonal in Benin. The situation in children under 5 years old is poor. The main problems are severe disease conditions and high fatality rates. Effective approaches such as prevention and early and appropriate treatment are necessary to reduce the malaria burden in pediatric patients.

7.
Mol Cancer ; 21(1): 178, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076232

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) is both a driver oncogene and a therapeutic target in advanced head and neck squamous cell carcinoma (HNSCC). However, response to EGFR treatment is inconsistent and lacks markers for treatment prediction. This study investigated EGFR-induced epithelial-to-mesenchymal transition (EMT) as a central parameter in tumor progression and identified novel prognostic and therapeutic targets, and a candidate predictive marker for EGFR therapy response. METHODS: Transcriptomic profiles were analyzed by RNA sequencing (RNA-seq) following EGFR-mediated EMT in responsive human HNSCC cell lines. Exclusive genes were extracted via differentially expressed genes (DEGs) and a risk score was determined through forward feature selection and Cox regression models in HNSCC cohorts. Functional characterization of selected prognostic genes was conducted in 2D and 3D cellular models, and findings were validated by immunohistochemistry in primary HNSCC. RESULTS: An EGFR-mediated EMT gene signature composed of n = 171 genes was identified in responsive cell lines and transferred to the TCGA-HNSCC cohort. A 5-gene risk score comprising DDIT4, FADD, ITGB4, NCEH1, and TIMP1 prognosticated overall survival (OS) in TCGA and was confirmed in independent HNSCC cohorts. The EGFR-mediated EMT signature was distinct from EMT hallmark and partial EMT (pEMT) meta-programs with a differing enrichment pattern in single malignant cells. Molecular characterization showed that ITGB4 was upregulated in primary tumors and metastases compared to normal mucosa and correlated with EGFR/MAPK activity in tumor bulk and single malignant cells. Preferential localization of ITGB4 together with its ligand laminin 5 at tumor-stroma interfaces correlated with increased tumor budding in primary HNSCC tissue sections. In vitro, ITGB4 knock-down reduced EGFR-mediated migration and invasion and ITGB4-antagonizing antibody ASC8 impaired 2D and 3D invasion. Furthermore, a logistic regression model defined ITGB4 as a predictive marker of progression-free survival in response to Cetuximab in recurrent metastatic HNSCC patients. CONCLUSIONS: EGFR-mediated EMT conveyed through MAPK activation contributes to HNSCC progression upon induction of migration and invasion. A 5-gene risk score based on a novel EGFR-mediated EMT signature prognosticated survival of HNSCC patients and determined ITGB4 as potential therapeutic and predictive target in patients with strong EGFR-mediated EMT.


Assuntos
Neoplasias de Cabeça e Pescoço , Transcriptoma , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Recidiva Local de Neoplasia/genética , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
8.
J Exp Bot ; 73(16): 5715-5729, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35728801

RESUMO

Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.


Assuntos
Mudança Climática , Triticum , Biomassa , Estações do Ano , Temperatura
9.
Glob Chang Biol ; 28(8): 2689-2710, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35043531

RESUMO

Crop models are powerful tools to support breeding because of their capability to explore genotype × environment×management interactions that can help design promising plant types under climate change. However, relationships between plant traits and model parameters are often model specific and not necessarily direct, depending on how models formulate plant morphological and physiological features. This hinders model application in plant breeding. We developed a novel trait-based multi-model ensemble approach to improve the design of rice plant types for future climate projections. We conducted multi-model simulations targeting enhanced productivity, and aggregated results into model-ensemble sets of phenotypic traits as defined by breeders rather than by model parameters. This allowed to overcome the limitations due to ambiguities in trait-parameter mapping from single modelling approaches. Breeders' knowledge and perspective were integrated to provide clear mapping from designed plant types to breeding traits. Nine crop models from the AgMIP-Rice Project and sensitivity analysis techniques were used to explore trait responses under different climate and management scenarios at four sites. The method demonstrated the potential of yield improvement that ranged from 15.8% to 41.5% compared to the current cultivars under mid-century climate projections. These results highlight the primary role of phenological traits to improve crop adaptation to climate change, as well as traits involved with canopy development and structure. The variability of plant types derived with different models supported model ensembles to handle related uncertainty. Nevertheless, the models agreed in capturing the effect of the heterogeneity in climate conditions across sites on key traits, highlighting the need for context-specific breeding programmes to improve crop adaptation to climate change. Although further improvement is needed for crop models to fully support breeding programmes, a trait-based ensemble approach represents a major step towards the integration of crop modelling and breeding to address climate change challenges and develop adaptation options.


Assuntos
Oryza , Adaptação Fisiológica , Mudança Climática , Oryza/genética , Fenótipo , Melhoramento Vegetal
10.
Mol Pharm ; 19(12): 4552-4564, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508302

RESUMO

Insulin-like growth factor 1 receptor (IGF1R), a cell surface receptor with tyrosine kinase (TK) activity, has ligands abnormally expressed in acute leukemia, multiple myeloma, breast, prostate, cervical, and nonsmall cell lung cancers, Ewing's sarcoma, and other malignant tumors. IGF1R mediates the malignant proliferation, invasion, and metastasis of tumor cells through a variety of signal transduction pathways, and it is also involved in tumor angiogenesis and tumor cell antiapoptosis. In this study, the neutral cytidinyl lipid DNCA and cystine skeleton cationic lipid CLD from our laboratory could be optimized to encapsulate antisense oligonucleotide (ASO) CT102 to form stable and uniform Mix/CT102 nanoparticles (NPs), which could specifically target tumor cells that highly expressed IGF1R in vivo by intravenous administration. Compared with naked CT102, the lipid complex could promote the uptake and late apoptosis levels of HepG2 and Huh-7 cells, inhibiting cell proliferation efficiently. We also found that Mix/CT102 could enter nucleus in about 2 h, effectively downregulating the mRNA level of IGF1R. The in vivo efficacy experiment demonstrated that in the group that received the optimal dose of Mix/CT102, tumor volume was reduced 8-fold compared with the naked dose group. Meanwhile, in vivo distribution studies showed that the nanoparticles had a predominant accumulation capacity in liver tissue. These results indicated that clinicians can expect the Mix/CT102 nanocomposite to be very effective in reducing the dose and frequency of clinically administered CT102, thereby reducing the side effects of ASOs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Oligonucleotídeos Antissenso , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Distribuição Tecidual , Lipídeos , Linhagem Celular Tumoral
11.
Mov Disord ; 35(4): 687-693, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31951675

RESUMO

BACKGROUND: Pathogenic variants in the small GTPase Ras Analogue in Brain 39b (RAB39B) have been linked to the development of early-onset parkinsonism. The study was aimed at delineating the clinical and neuropathological features associated with a previously reported pathogenic variant in RAB39B (c.503C>A p.T168K) and testing for dysregulation of RAB39B in idiopathic PD. METHODS: Clinical details of a male individual hemizygous for the T168K variant were collected by systematic review of medical records. Neuropathological studies of fixed brain tissue were performed and steady-state RAB39B levels were determined by western blot analysis. RESULTS: Neuropathological examination showed extensive dopaminergic neuron loss, widespread Lewy pathology, and iron accumulation in the substantia nigra. Additional pathology was observed in the hippocampus and thalamus. Western blot analysis demonstrated that the T168K variant results in loss of RAB39B. In individuals with idiopathic PD (n = 10, 6 male/4 female), steady-state RAB39B was significantly reduced in the prefrontal cortex and substantia nigra. CONCLUSIONS: T168K RAB39B is unstable in vivo and associated with dopaminergic neuron loss and Lewy pathology. Dysregulation of RAB39B in the prefrontal cortex and substantia nigra of individuals with idiopathic PD potentially implicates the protein more broadly in the pathological mechanisms underlying PD and related Lewy body disorders. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Doença de Parkinson/genética , Substância Negra/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
12.
Glob Chang Biol ; 25(4): 1428-1444, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30536680

RESUMO

Efforts to limit global warming to below 2°C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0°C warming above the pre-industrial period) on global wheat production and local yield variability. A multi-crop and multi-climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by -2.3% to 7.0% under the 1.5°C scenario and -2.4% to 10.5% under the 2.0°C scenario, compared to a baseline of 1980-2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter-annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer-India, which supplies more than 14% of global wheat. The projected global impact of warming <2°C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.

13.
Glob Chang Biol ; 25(1): 155-173, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30549200

RESUMO

Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32-multi-model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low-rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2 . Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by -1.1 percentage points, representing a relative change of -8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.


Assuntos
Adaptação Fisiológica , Mudança Climática , Proteínas de Grãos/análise , Triticum/química , Triticum/fisiologia , Dióxido de Carbono/metabolismo , Secas , Qualidade dos Alimentos , Modelos Teóricos , Nitrogênio/metabolismo , Temperatura
14.
J Transl Med ; 16(1): 38, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29471858

RESUMO

BACKGROUND: Breast cancer is one of the most frequent malignancies and the second leading cause of cancer-related mortality in women. MicroRNAs play a key role in breast cancer development and progression. microRNA(miR)-8084 has been observed an aberrant expression in breast cancer. However, the functions and regulatory axes of miR-8084, particularly in breast cancer, were not entirely clear. METHODS: miR-8084 expression in breast cancer were investigated in a GEO dataset by in silico analysis and in 42 paired tumor tissues by qPCR. The effects of deregulation of miR-8084 on breast cancer cell proliferation, migration and invasion in vitro and tumorigenicity in vivo were examined by colony-formation assay, wound healing assay, transwell assay and nude mouse subcutaneous tumor formation model. The target gene of miR-8084 were predicted by TargetScan and miRDB, and confirmed by luciferase reporter system. The roles of miR-8084 in the breast cancer cell proliferation, apoptosis and epithelial-mesenchymal transition (EMT) were investigated by MTS, FACS and associated-marker detection by western blot. RESULTS: miR-8084 is significantly up-regulated in both serum and malignant tissues from the source of breast cancer patients. miR-8084 promotes the proliferation of breast cancer cells by activating ERK1/2 and AKT. Meanwhile miR-8084 inhibits apoptosis by decreasing p53-BAX related pathway. miR-8084 also enhances migration and invasion by inducing EMT. Moreover, the tumor suppressor ING2 is a potential target of miR-8084, and miR-8084 regulatory axes contribute to pro-tumor effect, at least partially through regulating ING2. CONCLUSION: Our results strongly suggest that miR-8084 functions as an oncogene that promotes the development and progression of breast cancer, and miR-8084 is a potential new diagnostic marker and therapeutic target of breast cancer.


Assuntos
Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Células Clonais , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos BALB C , MicroRNAs/metabolismo , Modelos Biológicos , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/genética , Cicatrização , Proteína X Associada a bcl-2/metabolismo
15.
Mov Disord ; 33(2): 196-207, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29315801

RESUMO

The identification of pathogenic mutations in Ras analog in brain 39B (RAB39B) and Ras analog in brain 32 (RAB32) that cause Parkinson's disease (PD) has highlighted the emerging role of protein trafficking in disease pathogenesis. Ras analog in brain (Rab) Guanosine triphosphatase (GTPase) function as master regulators of membrane trafficking, including vesicle formation, movement along cytoskeletal networks, and membrane fusion. Recent studies have linked Rab GTPases with α-synuclein, Leucine-rich repeat kinase 2, and Vacuolar protein sorting 35, 3 key proteins in PD pathogenesis. In this review, we discuss the various RAB GTPases associated with PD, current progress in the research, and potential future directions. Investigations into the function of RAB GTPases will likely provide significant insight into the etiology of PD and identify novel therapeutic targets for a currently incurable disease. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Encéfalo/enzimologia , Mutação/genética , Doença de Parkinson/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Predisposição Genética para Doença/genética , Humanos , Doença de Parkinson/patologia
16.
Am J Hum Genet ; 95(6): 729-35, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25434005

RESUMO

Advances in understanding the etiology of Parkinson disease have been driven by the identification of causative mutations in families. Genetic analysis of an Australian family with three males displaying clinical features of early-onset parkinsonism and intellectual disability identified a ∼45 kb deletion resulting in the complete loss of RAB39B. We subsequently identified a missense mutation (c.503C>A [p.Thr168Lys]) in RAB39B in an unrelated Wisconsin kindred affected by a similar clinical phenotype. In silico and in vitro studies demonstrated that the mutation destabilized the protein, consistent with loss of function. In vitro small-hairpin-RNA-mediated knockdown of Rab39b resulted in a reduction in the density of α-synuclein immunoreactive puncta in dendritic processes of cultured neurons. In addition, in multiple cell models, we demonstrated that knockdown of Rab39b was associated with reduced steady-state levels of α-synuclein. Post mortem studies demonstrated that loss of RAB39B resulted in pathologically confirmed Parkinson disease. There was extensive dopaminergic neuron loss in the substantia nigra and widespread classic Lewy body pathology. Additional pathological features included cortical Lewy bodies, brain iron accumulation, tau immunoreactivity, and axonal spheroids. Overall, we have shown that loss-of-function mutations in RAB39B cause intellectual disability and pathologically confirmed early-onset Parkinson disease. The loss of RAB39B results in dysregulation of α-synuclein homeostasis and a spectrum of neuropathological features that implicate RAB39B in the pathogenesis of Parkinson disease and potentially other neurodegenerative disorders.


Assuntos
Genes Ligados ao Cromossomo X , Deficiência Intelectual/genética , Degeneração Neural/genética , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo , Proteínas rab de Ligação ao GTP/genética , Substituição de Aminoácidos , Austrália , Sequência de Bases , Dopamina/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Deficiência Intelectual/fisiopatologia , Corpos de Lewy/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Degeneração Neural/fisiopatologia , Doença de Parkinson/fisiopatologia , Linhagem , Análise de Sequência de DNA , Deleção de Sequência , Substância Negra/fisiopatologia , Proteínas rab de Ligação ao GTP/metabolismo
17.
J Asian Nat Prod Res ; 18(12): 1200-1204, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27352828

RESUMO

One new chromone, rel-(1S,2S,3S)-2,8-dihydroxy-6-methoxy-1,3-dimethyl-3,4-dihydro-1H-xanthen-9(2H)-one (1), together with one known compound wentiquinone A (2), were isolated from solid culture of endophytic fungus strain Bambusicola massarinia. The structures of all compounds were determined mainly by analysis of their NMR spectroscopic data. The relative configuration of compound 1 was determined by the single-crystal X-ray diffraction analyses.


Assuntos
Ascomicetos/química , Cromonas/química , Compostos Heterocíclicos com 3 Anéis/isolamento & purificação , Estilbenos/isolamento & purificação , Cromonas/isolamento & purificação , Cristalografia por Raios X , Compostos Heterocíclicos com 3 Anéis/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Estilbenos/química
18.
Biostatistics ; 20(2): 358-362, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165542
19.
Discov Oncol ; 15(1): 46, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386206

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a common malignant tumor, and its occurrence and development are closely related to dysbiosis of gut microbes. Previously, we found calorie restriction altered the composition of the microbial community in a colorectal cancer mouse model and inhibited in vivo growth of CRC cells. Here, we aim to further investigate alteration in the intestinal metabolites and explore the interplay between gut microbiota and intestinal metabolites upon calorie restriction. METHODS: Human colorectal cancer HCT116 cells were used to establish a colorectal cancer xenograft mouse model. The changes of intestinal metabolites in the ad libitum group and calorie restriction group were investigated through untargeted metabolomics analysis. The integrative analysis of gut microbiota and metabolites to elucidate the associations between gut microbiota and intestinal metabolites. RESULTS: Compared with the mice in the ad libitum group, mice upon calorie restriction exhibited downregulation of Isoleucyl-Valine, and upregulation of D-Proline, 1-Palmitoylphosphatidylcholine, and 4-Trimethylammoniobutanoic acid. Additionally, an integrative analysis of gut microbiota and metabolites revealed that Lactobacillus, Parabacteroides and rC4-4 genus were upregulated in the calorie restriction group and positively correlated with D-Proline, 4-Trimethylammoniobutanoic acid or 1-Palmitoylphosphatidylcholine, while negatively correlated with Isoleucyl-Valine. In contrast, the Nitrospirae and Deferribacteres phylum exhibited opposite trends. CONCLUSION: Calorie restriction affects the abundance of gut microbes such as Nitrospirae phylum and Lactobacillus genus in mouse model of colorectal cancer, leading to changes in the metabolites such as D-Proline、Isoleucyl-Valine, which contributes to the suppression of in vivo growth of CRC by calorie restriction.

20.
Lab Chip ; 24(2): 317-326, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38087953

RESUMO

This work reports the development of a novel microfluidic biosensor using a graphene field-effect transistor (GFET) design for the parallel label-free analysis of multiple biomarkers. Overcoming the persistent challenge of constructing µm2-sized FET sensitive interfaces that incorporate multiple receptors, we implement a split-float-gate structure that enables the manipulation of multiplexed biochemical functionalization using microfluidic channels. Immunoaffinity biosensing experiments are conducted using the mixture samples containing three liver cancer biomarkers, carcinoembryonic antigen (CEA), α-fetoprotein (AFP), and parathyroid hormone (PTH). The results demonstrate the capability of our label-free biochip to quantitatively detect multiple target biomarkers simultaneously by observing the kinetics in 10 minutes, with the detection limit levels in the nanomolar range. This microfluidic biosensor provides a valuable analytical tool for rapid multi-target biosensing, which can be potentially utilized for domiciliary tests of cancer screening and prognosis, obviating the need for sophisticated instruments and professional operations in hospitals.


Assuntos
Técnicas Biossensoriais , Grafite , Neoplasias Hepáticas , Humanos , Biomarcadores Tumorais/análise , Grafite/química , Microfluídica , Antígeno Carcinoembrionário/análise , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA