Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Chem Biol ; 18(12): 1341-1350, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36229685

RESUMO

Patients with castration-resistant prostate cancer inevitably acquire resistance to antiandrogen therapies in part because of androgen receptor (AR) mutations or splice variants enabling restored AR signaling. Here we show that ligand-activated AR can form transcriptionally active condensates. Both structured and unstructured regions of AR contribute to the effective phase separation of AR and disordered N-terminal domain plays a predominant role. AR liquid-liquid phase separation behaviors faithfully report transcriptional activity and antiandrogen efficacy. Antiandrogens can promote phase separation and transcriptional activity of AR-resistant mutants in a ligand-independent manner. We conducted a phase-separation-based phenotypic screen and identified ET516 that specifically disrupts AR condensates, effectively suppresses AR transcriptional activity and inhibits the proliferation and tumor growth of prostate cancer cells expressing AR-resistant mutants. Our results demonstrate liquid-liquid phase separation as an emerging mechanism underlying drug resistance and show that targeting phase separation may provide a feasible approach for drug discovery.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/genética , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Ligantes , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia
2.
J Virol ; 87(13): 7348-56, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23616646

RESUMO

The 2A proteinase (2A(pro)) is an enterovirally encoded cysteine protease that plays essential roles in both the processing of viral precursor polyprotein and the hijacking of host cell translation and other processes in the virus life cycle. Crystallographic studies of 2A(pro) from enterovirus 71 (EV71) and its interaction with the substrate are reported here. EV71 2A(pro) was comprised of an N-terminal domain of a four-stranded antiparallel ß sheet and a C-terminal domain of a six-stranded antiparallel ß barrel with a tightly bound zinc atom. Unlike in other 2A(pro) structures, there is an open cleft across the surface of the protein in an open conformation. As demonstrated by the crystallographic studies and modeling of the complex structure, the open cleft could be fitted with the substrate. On comparison 2A(pro) of EV71 to those of the human rhinovirus 2 and coxsackievirus B4, the open conformation could be closed with a hinge motion in the bII2 and cII ß strands. This was supported by molecular dynamic simulation. The structural variation among different 2A(pro) structures indicates a conformational flexibility in the substrate-binding cleft. The open structure provides an accessible framework for the design and development of therapeutics against the viral target.


Assuntos
Cisteína Endopeptidases/química , Enterovirus Humano A/enzimologia , Modelos Moleculares , Conformação Proteica , Sequência de Aminoácidos , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Escherichia coli , Transferência Ressonante de Energia de Fluorescência , Vetores Genéticos/genética , Dados de Sequência Molecular , Mutagênese , Reação em Cadeia da Polimerase , Alinhamento de Sequência
3.
J Med Chem ; 65(7): 5317-5333, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35352560

RESUMO

Polycomb Repressive Complex 2 (PRC2) plays an important role in transcriptional regulation during animal development and in cell differentiation, and alteration of PRC2 activity has been associated with cancer. On a molecular level, PRC2 catalyzes methylation of histone H3 lysine 27 (H3K27), resulting in mono-, di-, or trimethylated forms of H3K27, of which the trimethylated form H3K27me3 leads to transcriptional repression of polycomb target genes. Previously, we have shown that binding of the low-molecular-weight compound EED226 to the H3K27me3 binding pocket of the regulatory subunit EED can effectively inhibit PRC2 activity in cells and reduce tumor growth in mouse xenograft models. Here, we report the stepwise optimization of the tool compound EED226 toward the potent and selective EED inhibitor MAK683 (compound 22) and its subsequent preclinical characterization. Based on a balanced PK/PD profile, efficacy, and mitigated risk of forming reactive metabolites, MAK683 has been selected for clinical development.


Assuntos
Histonas , Neoplasias , Animais , Inibidores Enzimáticos , Histonas/metabolismo , Humanos , Metilação , Camundongos , Neoplasias/tratamento farmacológico , Complexo Repressor Polycomb 2
4.
BMC Pharmacol ; 10: 10, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-20735854

RESUMO

BACKGROUND: Infarct-induced left ventricular (LV) remodeling is a deleterious consequence after acute myocardial infarction (MI) which may further advance to congestive heart failure. Therefore, new therapeutic strategies to attenuate the effects of LV remodeling are urgently needed. Salvianolic acid B (SalB) from Salviae mitiorrhizae, which has been widely used in China for the treatment of cardiovascular diseases, is a potential candidate for therapeutic intervention of LV remodeling targeting matrix metalloproteinase-9 (MMP-9). RESULTS: Molecular modeling and LIGPLOT analysis revealed in silico docking of SalB at the catalytic site of MMP-9. Following this lead, we expressed truncated MMP-9 which contains only the catalytic domain, and used this active protein for in-gel gelatin zymography, enzymatic analysis, and SalB binding by Biacore. Data generated from these assays indicated that SalB functioned as a competitive inhibitor of MMP-9. In our rat model for cardiac remodeling, western blot, echocardiography, hemodynamic measurement and histopathological detection were used to detect the effects and mechanism of SalB on cardio-protection. Our results showed that in MI rat, SalB selectively inhibited MMP-9 activities without affecting MMP-9 expression while no effect of SalB was seen on MMP-2. Moreover, SalB treatment in MI rat could efficiently increase left ventricle wall thickness, improve heart contractility, and decrease heart fibrosis. CONCLUSIONS: As a competitive inhibitor of MMP-9, SalB presents significant effects on preventing LV structural damage and preserving cardiac function. Further studies to develop SalB and its analogues for their potential for cardioprotection in clinic are warranted.


Assuntos
Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Inibidores de Metaloproteinases de Matriz , Infarto do Miocárdio/tratamento farmacológico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Remodelação Ventricular/efeitos dos fármacos , Animais , Benzofuranos/química , Benzofuranos/metabolismo , Sítios de Ligação , Simulação por Computador , Regulação para Baixo/efeitos dos fármacos , Desenho de Fármacos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fibrose , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Conformação Molecular , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
BMC Bioinformatics ; 9: 104, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18282303

RESUMO

BACKGROUND: Target identification is important for modern drug discovery. With the advances in the development of molecular docking, potential binding proteins may be discovered by docking a small molecule to a repository of proteins with three-dimensional (3D) structures. To complete this task, a reverse docking program and a drug target database with 3D structures are necessary. To this end, we have developed a web server tool, TarFisDock (Target Fishing Docking) http://www.dddc.ac.cn/tarfisdock, which has been used widely by others. Recently, we have constructed a protein target database, Potential Drug Target Database (PDTD), and have integrated PDTD with TarFisDock. This combination aims to assist target identification and validation. DESCRIPTION: PDTD is a web-accessible protein database for in silico target identification. It currently contains >1100 protein entries with 3D structures presented in the Protein Data Bank. The data are extracted from the literatures and several online databases such as TTD, DrugBank and Thomson Pharma. The database covers diverse information of >830 known or potential drug targets, including protein and active sites structures in both PDB and mol2 formats, related diseases, biological functions as well as associated regulating (signaling) pathways. Each target is categorized by both nosology and biochemical function. PDTD supports keyword search function, such as PDB ID, target name, and disease name. Data set generated by PDTD can be viewed with the plug-in of molecular visualization tools and also can be downloaded freely. Remarkably, PDTD is specially designed for target identification. In conjunction with TarFisDock, PDTD can be used to identify binding proteins for small molecules. The results can be downloaded in the form of mol2 file with the binding pose of the probe compound and a list of potential binding targets according to their ranking scores. CONCLUSION: PDTD serves as a comprehensive and unique repository of drug targets. Integrated with TarFisDock, PDTD is a useful resource to identify binding proteins for active compounds or existing drugs. Its potential applications include in silico drug target identification, virtual screening, and the discovery of the secondary effects of an old drug (i.e. new pharmacological usage) or an existing target (i.e. new pharmacological or toxic relevance), thus it may be a valuable platform for the pharmaceutical researchers. PDTD is available online at http://www.dddc.ac.cn/pdtd/.


Assuntos
Bases de Dados de Proteínas , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Internet , Proteínas/química , Proteínas/ultraestrutura , Interface Usuário-Computador , Sítios de Ligação , Sistemas de Gerenciamento de Base de Dados , Armazenamento e Recuperação da Informação/métodos , Ligação Proteica , Conformação Proteica , Análise de Sequência de Proteína/métodos
6.
Nucleic Acids Res ; 34(Web Server issue): W219-24, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16844997

RESUMO

TarFisDock is a web-based tool for automating the procedure of searching for small molecule-protein interactions over a large repertoire of protein structures. It offers PDTD (potential drug target database), a target database containing 698 protein structures covering 15 therapeutic areas and a reverse ligand-protein docking program. In contrast to conventional ligand-protein docking, reverse ligand-protein docking aims to seek potential protein targets by screening an appropriate protein database. The input file of this web server is the small molecule to be tested, in standard mol2 format; TarFisDock then searches for possible binding proteins for the given small molecule by use of a docking approach. The ligand-protein interaction energy terms of the program DOCK are adopted for ranking the proteins. To test the reliability of the TarFisDock server, we searched the PDTD for putative binding proteins for vitamin E and 4H-tamoxifen. The top 2 and 10% candidates of vitamin E binding proteins identified by TarFisDock respectively cover 30 and 50% of reported targets verified or implicated by experiments; and 30 and 50% of experimentally confirmed targets for 4H-tamoxifen appear amongst the top 2 and 5% of the TarFisDock predicted candidates, respectively. Therefore, TarFisDock may be a useful tool for target identification, mechanism study of old drugs and probes discovered from natural products. TarFisDock and PDTD are available at http://www.dddc.ac.cn/tarfisdock/.


Assuntos
Desenho de Fármacos , Proteínas/química , Software , Bases de Dados de Proteínas , Internet , Ligantes , Proteínas/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/química , Tamoxifeno/metabolismo , Interface Usuário-Computador , Vitamina E/química , Vitamina E/metabolismo
7.
J Med Chem ; 60(6): 2215-2226, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28092155

RESUMO

Overexpression and somatic heterozygous mutations of EZH2, the catalytic subunit of polycomb repressive complex 2 (PRC2), are associated with several tumor types. EZH2 inhibitor, EPZ-6438 (tazemetostat), demonstrated clinical efficacy in patients with acceptable safety profile as monotherapy. EED, another subunit of PRC2 complex, is essential for its histone methyltransferase activity through direct binding to trimethylated lysine 27 on histone 3 (H3K27Me3). Herein we disclose the discovery of a first-in-class potent, selective, and orally bioavailable EED inhibitor compound 43 (EED226). Guided by X-ray crystallography, compound 43 was discovered by fragmentation and regrowth of compound 7, a PRC2 HTS hit that directly binds EED. The ensuing scaffold hopping followed by multiparameter optimization led to the discovery of 43. Compound 43 induces robust and sustained tumor regression in EZH2MUT preclinical DLBCL model. For the first time we demonstrate that specific and direct inhibition of EED can be effective as an anticancer strategy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Sulfonas/química , Sulfonas/farmacologia , Triazóis/química , Triazóis/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Cães , Feminino , Haplorrinos , Histonas/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Lisina/metabolismo , Masculino , Metilação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , Ratos , Sulfonas/farmacocinética , Sulfonas/uso terapêutico , Triazóis/farmacocinética , Triazóis/uso terapêutico
8.
PLoS One ; 12(1): e0169855, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28072869

RESUMO

Polycomb repressive complex 2 (PRC2), a histone H3 lysine 27 methyltransferase, plays a key role in gene regulation and is a known epigenetics drug target for cancer therapy. The WD40 domain-containing protein EED is the regulatory subunit of PRC2. It binds to the tri-methylated lysine 27 of the histone H3 (H3K27me3), and through which stimulates the activity of PRC2 allosterically. Recently, we disclosed a novel PRC2 inhibitor EED226 which binds to the K27me3-pocket on EED and showed strong antitumor activity in xenograft mice model. Here, we further report the identification and validation of four other EED binders along with EED162, the parental compound of EED226. The crystal structures for all these five compounds in complex with EED revealed a common deep pocket induced by the binding of this diverse set of compounds. This pocket was created after significant conformational rearrangement of the aromatic cage residues (Y365, Y148 and F97) in the H3K27me3 binding pocket of EED, the width of which was delineated by the side chains of these rearranged residues. In addition, all five compounds interact with the Arg367 at the bottom of the pocket. Each compound also displays unique features in its interaction with EED, suggesting the dynamics of the H3K27me3 pocket in accommodating the binding of different compounds. Our results provide structural insights for rational design of novel EED binder for the inhibition of PRC2 complex activity.


Assuntos
Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Complexo Repressor Polycomb 2/antagonistas & inibidores , Sulfonas/farmacologia , Triazóis/farmacologia , Animais , Sítios de Ligação , Descoberta de Drogas , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Camundongos , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , Relação Quantitativa Estrutura-Atividade , Sulfonas/química , Triazóis/química
9.
ACS Med Chem Lett ; 7(10): 896-901, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27774125

RESUMO

A series of trisubstituted hydroxylactams was identified as potent enzymatic and cellular inhibitors of human lactate dehydrogenase A. Utilizing structure-based design and physical property optimization, multiple inhibitors were discovered with <10 µM lactate IC50 in a MiaPaca2 cell line. Optimization of the series led to 29, a potent cell active molecule (MiaPaca2 IC50 = 0.67 µM) that also possessed good exposure when dosed orally to mice.

10.
J Med Chem ; 55(16): 7037-53, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22862148

RESUMO

LBVS of 12480 in-house compounds, followed by HTRF assay, resulted in one nonsteroidal compound (11) with antagonistic activity against FXR (69.01 ± 11.75 µM). On the basis of 11, 26 new derivatives (12a-z) were designed and synthesized accordingly. Five derivatives (12f-g, 12p, 12u, and 12y) showed better antagonistic activities against FXR than compound 11. Remarkably, the most potent derivative, 12u (8.96 ± 3.62 µM), showed antagonistic capability approximately 10 times and 8-fold higher than that of the control (GS) and the starting compound 11, respectively. 12u was further confirmed to have high binding affinity with FXRαLBD, FXR specificity over six other nuclear receptors, and potent antagonistic activity against FXR in two cell testing platforms. 12u strongly suppressed the regulating effects of CDCA on FXR target genes. The therapeutic potential of 12u was identified by lowering the contents of triglyceride and cholesterol in human hepatoma HepG2 cells and in the cholesterol-fed C57BL/6 mices.


Assuntos
Anticolesterolemiantes/síntese química , Compostos de Benzilideno/síntese química , Pirazóis/síntese química , Pirazolonas/síntese química , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Animais , Anticolesterolemiantes/química , Anticolesterolemiantes/farmacologia , Compostos de Benzilideno/química , Compostos de Benzilideno/farmacologia , Disponibilidade Biológica , Ácido Quenodesoxicólico/farmacologia , Colesterol/metabolismo , Bases de Dados de Compostos Químicos , Células HEK293 , Células Hep G2 , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Pirazóis/química , Pirazóis/farmacologia , Pirazolonas/química , Pirazolonas/farmacologia , Ratos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Solubilidade , Estereoisomerismo , Relação Estrutura-Atividade , Transcrição Gênica , Ativação Transcricional , Triglicerídeos/metabolismo
12.
Biochem Pharmacol ; 75(6): 1381-92, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18164690

RESUMO

Deoxyelephantopin (ESD) was reported to potentiate apoptosis, inhibit invasion and abolish osteoclastogenesis but no target protein was disclosed. Here, we discovered that ESD could significantly inhibit the proliferation of different cancer cells and induce apoptosis and cell cycle arrest at G(2)/M phase in HeLa cell. Moreover, biochemical and biophysical assays revealed that ESD acted as a specific partial agonist against PPARgamma. Molecular docking with site-directed mutagenesis analyses indicated that ESD functioned as a partial agonist of PPARgamma by adopting a distinct binding mode to PPARgamma compared with rosiglitazone. The PPARgamma knockdown results indicated that the inhibition of ESD against the cancer cell proliferation is more possibly through PPARgamma-independent pathway and our findings might supply potent binding features for ESD/PPARgamma interaction at atomic level, and shed light on the potential acting target information for this natural compound.


Assuntos
Antineoplásicos/farmacologia , Lactonas/farmacologia , PPAR gama/agonistas , Sesquiterpenos/farmacologia , Animais , Antineoplásicos/metabolismo , Apoptose , Células COS , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Células HeLa , Humanos , Lactonas/metabolismo , Modelos Moleculares , PPAR gama/metabolismo , Sesquiterpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA