Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(26): 18161-18171, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916483

RESUMO

Inorganic ternary metal-C-N compounds with covalently bonded C-N anions encompass important classes of solids such as cyanides and carbodiimides, well known at ambient conditions and composed of [CN]- and [CN2]2- anions, as well as the high-pressure formed guanidinates featuring [CN3]5- anion. At still higher pressures, carbon is expected to be 4-fold coordinated by nitrogen atoms, but hitherto, such CN4-built anions are missing. In this study, four polycarbonitride compounds (LaCN3, TbCN3, CeCN5, and TbCN5) are synthesized in laser-heated diamond anvil cells at pressures between 90 and 111 GPa. Synchrotron single-crystal X-ray diffraction (SCXRD) reveals that their crystal structures are built of a previously unobserved anionic single-bonded carbon-nitrogen three-dimensional (3D) framework consisting of CN4 tetrahedra connected via di- or oligo-nitrogen linkers. A crystal-chemical analysis demonstrates that these polycarbonitride compounds have similarities to lanthanide silicon phosphides. Decompression experiments reveal the existence of LaCN3 and CeCN5 compounds over a very large pressure range. Density functional theory (DFT) supports these discoveries and provides further insight into the stability and physical properties of the synthesized compounds.

2.
J Synchrotron Radiat ; 31(Pt 3): 527-539, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597746

RESUMO

A new experimental setup combining X-ray photon correlation spectroscopy (XPCS) in the hard X-ray regime and a high-pressure sample environment has been developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-gigapascal range, from room temperature to 600 K. The high flux of coherent high-energy X-rays at fourth-generation synchrotron sources solves the problems caused by the absorption of diamond anvil cells used to generate high pressure, enabling the measurement of the intermediate scattering function over six orders of magnitude in time, from 10-3 s to 103 s. The constraints posed by the high-pressure generation such as the preservation of X-ray coherence, as well as the sample, pressure and temperature stability, are discussed, and the feasibility of high-pressure XPCS is demonstrated through results obtained on metallic glasses.

3.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38828824

RESUMO

Ethane (C2H6) is anticipated to be the most stable compound within the carbon-hydrogen system under the 100 GPa pressure range. Nevertheless, the properties of ethane under pressure are still poorly documented. Here, we present a comprehensive study of the structural and vibrational properties of C2H6 in a diamond anvil cell at pressures up to 150 GPa. To obtain detailed data, ethane single-crystal was grown in a helium pressure-transmitting medium. Utilizing single-crystal x-ray diffraction, the distortion mechanism between the tetragonal and monoclinic phases, occurring over the 3.2-5.2 GPa pressure range, is disclosed. Subsequently, no phase transition is observed up to 150 GPa. The accurately measured compression curve is compared to various computational approximations. The vibrational modes measured by Raman spectroscopy and infrared absorption are well identified, and their evolution is well reproduced by ab initio calculations. In particular, an unusual anticrossing phenomenon occurs near 40 GPa between a rocking and a stretching mode, likely attributable to intermolecular interactions through hydrogen bonding.

4.
Angew Chem Int Ed Engl ; 63(11): e202319278, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38156778

RESUMO

A chemical reaction between Sb and N2 was induced under high-pressure (32-35 GPa) and high-temperature (1600-2200 K) conditions, generated by a laser heated diamond anvil cell. The reaction product was identified by single crystal synchrotron X-ray diffraction at 35 GPa and room temperature as crystalline antimony nitride with Sb3 N5 stoichiometry and structure belonging to orthorhombic space group Cmc21 . Only Sb-N bonds are present in the covalent bonding framework, with two types of Sb atoms respectively forming SbN6 distorted octahedra and trigonal prisms and three types of N atoms forming NSb4 distorted tetrahedra and NSb3 trigonal pyramids. Taking into account two longer Sb-N distances, the SbN6 trigonal prisms can be depicted as SbN8 square antiprisms and the NSb3 trigonal pyramids as NSb4 distorted tetrahedra. The Sb3 N5 structure can be described as an ordered stacking in the bc plane of bi- layers of SbN6 octahedra alternated to monolayers of SbN6 trigonal prisms (SbN8 square antiprisms). The discovery of Sb3 N5 finally represents the long sought-after experimental evidence for Sb to form a crystalline nitride, providing new insights about fundamental aspects of pnictogens chemistry and opening new perspectives for the high-pressure chemistry of pnictogen nitrides and the synthesis of an entire class of new materials.

5.
Nanoscale ; 16(18): 9096-9107, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38646807

RESUMO

Hexagonal boron nitride (hBN) and black phosphorus (bP) are crystalline materials that can be seen as ordered stackings of two-dimensional layers, which lead to outstanding anisotropic physical properties. Knowledge of the thermal equations of state of hBN and bP is of great interest in the field of 2D materials for a better understanding of their anisotropic thermo-mechanical properties and exfoliation mechanism towards the preparation of important single-layer materials like hexagonal boron nitride nanosheets and phosphorene. Despite several theoretical and experimental studies, important uncertainties remain in the determination of the thermoelastic parameters of hBN and bP. Here, we report accurate thermal expansion and compressibility measurements along the individual crystallographic axes, using in situ high-temperature and high-pressure high-resolution synchrotron X-ray diffraction. In particular, we have quantitatively determined the subtle variations of the in-plane and volumetric thermal expansion coefficients and compressibility parameters by subjecting these materials to hydrostatic conditions and by collecting a large number of data points in small pressure and temperature increments. In addition, based on the anisotropic behavior of bP, we propose the use of this material as a sensor for the simultaneous determination of pressure and temperature in the range of 0-5 GPa and 298-1700 K, respectively.

6.
J Phys Chem Lett ; : 8402-8409, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115822

RESUMO

Black phosphorus (bP) is a crystalline material that can be seen as an ordered stacking of two-dimensional layers, which results in outstanding anisotropic physical properties. The knowledge of its pressure (P)-temperature (T) phase diagram, and in particular, of its melting curve is fundamental for a better understanding of the synthesis and stability conditions of this element. Despite the numerous studies devoted to this subject, significant uncertainties remain regarding the determination of the position and slope of its melting curve. Here we measured the melting curve of bP in an extended P, T region from 0.10(3) to 5.05(40) GPa and from 914(25) to 1788(70) K, using in situ high-pressure and high-temperature synchrotron X-ray diffraction. We employed an original metrology based on the anisotropic thermoelastic properties of bP to accurately determine P and T. We observed a monotonic increase of the melting temperature with pressure and the existence of two distinct linear regimes below and above 1.35(15) GPa, with respective slopes of 348 ± 21 and of 105 ± 12 K·GPa-1. These correspond to the melting of bP toward the low-density liquid and the high-density liquid, respectively. The triple point at which solid bP and the two liquids meet is located at 1.35(15) GPa and 1350(25) K. In addition, we have characterized the solid phases after crystallization of the two liquids and found that, while the high-density liquid transforms back to solid bP, the low-density liquid crystallizes into a more complex, partly crystalline and partly amorphous solid. The X-ray diffraction pattern of the crystalline component could be indexed as a mixture of red and violet P.

7.
Sci Adv ; 10(11): eadl5416, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478619

RESUMO

The yttrium-hydrogen system has gained attention because of near-ambient temperature superconductivity reports in yttrium hydrides at high pressures. We conducted a study using synchrotron single-crystal x-ray diffraction (SCXRD) at 87 to 171 GPa, resulting in the discovery of known (two YH3 phases) and five previously unknown yttrium hydrides. These were synthesized in diamond anvil cells by laser heating yttrium with hydrogen-rich precursors-ammonia borane or paraffin oil. The arrangements of yttrium atoms in the crystal structures of new phases were determined on the basis of SCXRD, and the hydrogen content estimations based on empirical relations and ab initio calculations revealed the following compounds: Y3H11, Y2H9, Y4H23, Y13H75, and Y4H25. The study also uncovered a carbide (YC2) and two yttrium allotropes. Complex phase diversity, variable hydrogen content in yttrium hydrides, and their metallic nature, as revealed by ab initio calculations, underline the challenges in identifying superconducting phases and understanding electronic transitions in high-pressure synthesized materials.

8.
ACS Nano ; 18(32): 21052-21060, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39086092

RESUMO

The emergence of correlated phenomena arising from the combination of 1T and 1H van der Waals layers is the focus of intense research. Here, we synthesize a self-stacked 6R phase in NbSeTe, showing perfect alternating 1T and 1H layers that grow coherently along the c-direction, as revealed by scanning transmission electron microscopy. Angle-resolved photoemission spectroscopy shows a mixed contribution of the trigonal and octahedral Nb bands to the Fermi level. Diffuse scattering reveals temperature-independent short-range charge fluctuations with propagation vector qCO = (0.25 0), derived from the condensation of a longitudinal mode in the 1T layer, while the long-range charge density wave is quenched by ligand disorder. Magnetization measurements suggest the presence of an inhomogeneous, short-range magnetic order, further supported by the absence of a clear phase transition in the specific heat. These experimental analyses in combination with ab initio calculations indicate that the ground state of 6R-NbSeTe is described by a statistical distribution of short-range charge-modulated and spin-correlated regions driven by ligand disorder. Our results demonstrate how natural 1T-1H self-stacked bulk heterostructures can be used to engineer emergent phases of matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA