Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Small ; 19(50): e2205078, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36587991

RESUMO

Three-dimensional (3D) bioprinting is driving significant innovations in biomedicine over recent years. Under certain scenarios such as in intraoperative bioprinting, the bioinks used should exhibit not only cyto/biocompatibility but also adhesiveness in wet conditions. Herein, an adhesive bioink composed of gelatin methacryloyl, gelatin, methacrylated hyaluronic acid, and skin secretion of Andrias davidianus is designed. The bioink exhibits favorable cohesion to allow faithful extrusion bioprinting in wet conditions, while simultaneously showing good adhesion to a variety of surfaces of different chemical properties, possibly achieved through the diverse bonds presented in the bioink formulation. As such, this bioink is able to fabricate sophisticated planar and volumetric constructs using extrusion bioprinting, where the dexterity is further enhanced using ergonomic handheld bioprinters to realize in situ bioprinting. In vitro experiments reveal that cells maintain high viability; further in vivo studies demonstrate good integration and immediate injury sealing. The characteristics of the bioink indicate its potential widespread utility in extrusion bioprinting and will likely broaden the applications of bioprinting toward situations such as in situ dressing and minimally invasive tissue regeneration.


Assuntos
Bioimpressão , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Adesivos , Gelatina/química , Pele , Cicatrização , Impressão Tridimensional , Hidrogéis/química , Bioimpressão/métodos
2.
Small ; 18(25): e2106357, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35607752

RESUMO

It is well-known that tissue engineering scaffolds that feature highly interconnected and size-adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore-forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two-phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore-forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl-modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA-based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses.


Assuntos
Bioimpressão , Animais , Emulsões , Gelatina/química , Hidrogéis/química , Metacrilatos , Impressão Tridimensional , Suínos , Engenharia Tecidual , Alicerces Teciduais/química
3.
Adv Mater ; 34(1): e2107038, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34609032

RESUMO

Recapitulation of complex tissues signifies a remarkable challenge and, to date, only a few approaches have emerged that can efficiently reconstruct necessary gradients in 3D constructs. This is true even though mimicry of these gradients is of great importance to establish the functionality of engineered tissues and devices. Here, a composable-gradient Digital Light Processing (DLP)-based (bio)printing system is developed, utilizing the unprecedented integration of a microfluidic mixer for the generation of either continual or discrete gradients of desired (bio)inks in real time. Notably, the precisely controlled gradients are composable on-the-fly by facilely by adjusting the (bio)ink flow ratios. In addition, this setup is designed in such a way that (bio)ink waste is minimized when exchanging the gradient (bio)inks, further enhancing this time- and (bio)ink-saving strategy. Various planar and 3D structures exhibiting continual gradients of materials, of cell densities, of growth factor concentrations, of hydrogel stiffness, and of porosities in horizontal and/or vertical direction, are exemplified. The composable fabrication of multifunctional gradients strongly supports the potential of the unique bioprinting system in numerous biomedical applications.


Assuntos
Bioimpressão , Hidrogéis/química , Tinta , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
4.
Biofabrication ; 14(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008080

RESUMO

Thrombosis in the circulation system can lead to major myocardial infarction and cardiovascular deaths. Understanding thrombosis formation is necessary for developing safe and effective treatments. In this work, using digital light processing (DLP)-based 3D printing, we fabricated sophisticatedin vitromodels of blood vessels with internal microchannels that can be used for thrombosis studies. In this regard, photoacoustic microscopy (PAM) offers a unique advantage for label-free visualization of the 3D-printed vessel models, with large penetration depth and functional sensitivity. We compared the imaging performances of two PAM implementations: optical-resolution PAM and acoustic-resolution PAM, and investigated 3D-printed vessel structures with different patterns of microchannels. Our results show that PAM can provide clear microchannel structures at depths up to 3.6 mm. We further quantified the blood oxygenation in the 3D-printed vascular models, showing that thrombi had lower oxygenation than the normal blood. We expect that PAM can find broad applications in 3D printing and bioprinting forin vitrostudies of various vascular and other diseases.


Assuntos
Técnicas Fotoacústicas , Microscopia/métodos , Técnicas Fotoacústicas/métodos , Impressão Tridimensional , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA