Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 40(23): e103718, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698396

RESUMO

Mixed lineage kinase domain-like (MLKL) is the executioner in the caspase-independent form of programmed cell death called necroptosis. Receptor-interacting serine/threonine protein kinase 3 (RIPK3) phosphorylates MLKL, triggering MLKL oligomerization, membrane translocation and membrane disruption. MLKL also undergoes ubiquitylation during necroptosis, yet neither the mechanism nor the significance of this event has been demonstrated. Here, we show that necroptosis-specific multi-mono-ubiquitylation of MLKL occurs following its activation and oligomerization. Ubiquitylated MLKL accumulates in a digitonin-insoluble cell fraction comprising organellar and plasma membranes and protein aggregates. Appearance of this ubiquitylated MLKL form can be reduced by expression of a plasma membrane-located deubiquitylating enzyme. Oligomerization-induced MLKL ubiquitylation occurs on at least four separate lysine residues and correlates with its proteasome- and lysosome-dependent turnover. Using a MLKL-DUB fusion strategy, we show that constitutive removal of ubiquitin from MLKL licences MLKL auto-activation independent of necroptosis signalling in mouse and human cells. Therefore, in addition to the role of ubiquitylation in the kinetic regulation of MLKL-induced death following an exogenous necroptotic stimulus, it also contributes to restraining basal levels of activated MLKL to avoid unwanted cell death.


Assuntos
Membrana Celular/metabolismo , Necroptose , Proteínas Quinases/metabolismo , Proteínas Quinases/fisiologia , Multimerização Proteica , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Complexo de Endopeptidases do Proteassoma , Proteínas Quinases/química , Proteínas Quinases/genética , Ubiquitina Tiolesterase/genética
2.
Biochem J ; 481(17): 1125-1142, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39136677

RESUMO

Necroptosis is a lytic and pro-inflammatory form of programmed cell death executed by the terminal effector, the MLKL (mixed lineage kinase domain-like) pseudokinase. Downstream of death and Toll-like receptor stimulation, MLKL is trafficked to the plasma membrane via the Golgi-, actin- and microtubule-machinery, where activated MLKL accumulates until a critical lytic threshold is exceeded and cell death ensues. Mechanistically, MLKL's lytic function relies on disengagement of the N-terminal membrane-permeabilising four-helix bundle domain from the central autoinhibitory brace helix: a process that can be experimentally mimicked by introducing the R30E MLKL mutation to induce stimulus-independent cell death. Here, we screened a library of 429 kinase inhibitors for their capacity to block R30E MLKL-mediated cell death, to identify co-effectors in the terminal steps of necroptotic signalling. We identified 13 compounds - ABT-578, AR-A014418, AZD1480, AZD5363, Idelalisib, Ipatasertib, LJI308, PHA-793887, Rapamycin, Ridaforolimus, SMI-4a, Temsirolimus and Tideglusib - each of which inhibits mammalian target of rapamycin (mTOR) signalling or regulators thereof, and blocked constitutive cell death executed by R30E MLKL. Our study implicates mTOR signalling as an auxiliary factor in promoting the transport of activated MLKL oligomers to the plasma membrane, where they accumulate into hotspots that permeabilise the lipid bilayer to cause cell death.


Assuntos
Necroptose , Proteínas Quinases , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Necroptose/efeitos dos fármacos , Necroptose/fisiologia , Humanos , Serina-Treonina Quinases TOR/metabolismo , Inibidores de Proteínas Quinases/farmacologia
3.
Proc Natl Acad Sci U S A ; 117(15): 8468-8475, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32234780

RESUMO

The necroptosis cell death pathway has been implicated in host defense and in the pathology of inflammatory diseases. While phosphorylation of the necroptotic effector pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) by the upstream protein kinase RIPK3 is a hallmark of pathway activation, the precise checkpoints in necroptosis signaling are still unclear. Here we have developed monobodies, synthetic binding proteins, that bind the N-terminal four-helix bundle (4HB) "killer" domain and neighboring first brace helix of human MLKL with nanomolar affinity. When expressed as genetically encoded reagents in cells, these monobodies potently block necroptotic cell death. However, they did not prevent MLKL recruitment to the "necrosome" and phosphorylation by RIPK3, nor the assembly of MLKL into oligomers, but did block MLKL translocation to membranes where activated MLKL normally disrupts membranes to kill cells. An X-ray crystal structure revealed a monobody-binding site centered on the α4 helix of the MLKL 4HB domain, which mutational analyses showed was crucial for reconstitution of necroptosis signaling. These data implicate the α4 helix of its 4HB domain as a crucial site for recruitment of adaptor proteins that mediate membrane translocation, distinct from known phospholipid binding sites.


Assuntos
Materiais Biomiméticos/farmacologia , Membrana Celular/metabolismo , Domínio de Fibronectina Tipo III , Necrose , Oligopeptídeos/farmacologia , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Cristalografia por Raios X , Humanos , Fosforilação , Conformação Proteica , Proteínas Quinases/química , Multimerização Proteica , Transporte Proteico
4.
Biochem Soc Trans ; 50(1): 529-539, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35166320

RESUMO

Programmed cell death has long been characterised as a key player in the development of human disease. Necroptosis is a lytic form of programmed cell death that is universally mediated by the effector protein mixed lineage kinase domain-like (MLKL), a pseudokinase. MLKL's activating kinase, receptor interacting protein kinase 3 (RIPK3), is itself activated within context specific scaffolds of receptor interacting protein kinase 1 (RIPK1), Z-DNA Binding Protein-1 (ZBP1) or TIR domain-containing adaptor inducing interferon-ß (TRIF). These core necroptosis modulating proteins have been comprehensively revealed as potent drivers and suppressors of disease in inbred mouse strains. However, their roles in human disease within the 'real world' of diverse genetic backgrounds, natural infection and environmental challenges remains less well understood. Over 20 unique disease-associated human germline gene variants in this core necroptotic machinery have been reported in the literature and human clinico-genetics databases like ClinVar to date. In this review, we provide an overview of these human gene variants, with an emphasis on those encoding MLKL. These experiments of nature have the potential to not only enrich our understanding of the basic biology of necroptosis, but offer important population level insights into which clinical indications stand to benefit most from necroptosis-targeted drugs.


Assuntos
Necroptose , Proteínas Quinases , Animais , Apoptose/genética , Células Germinativas/metabolismo , Humanos , Camundongos , Necroptose/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais
6.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-39138067

RESUMO

Coxiella burnetii is a globally distributed obligate intracellular pathogen. Although often asymptomatic, infections can cause acute Q fever with influenza-like symptoms and/or severe chronic Q fever. Coxiella burnetii develops a unique replicative niche within host cells called the Coxiella-containing vacuole (CCV), facilitated by the Dot/Icm type IV secretion system translocating a cohort of bacterial effector proteins into the host. The role of some effectors has been elucidated; however, the actions of the majority remain enigmatic and the list of true effectors is disputable. This study examined CBU2016, a unique C. burnetii protein previously designated as an effector with a role in infection. We were unable to validate CBU2016 as a translocated effector protein. Employing targeted knock-out and complemented strains, we found that the loss of CBU2016 did not cause a replication defect within Hela, THP-1, J774, or iBMDM cells or in axenic media, nor did it affect the pathogenicity of C. burnetii in the Galleria mellonella infection model. The absence of CBU2016 did, however, result in a consistent decrease in the size of CCVs in HeLa cells. These results suggest that although CBU2016 may not be a Dot/Icm effector, it is still able to influence the host environment during infection.


Assuntos
Proteínas de Bactérias , Coxiella burnetii , Febre Q , Vacúolos , Coxiella burnetii/genética , Coxiella burnetii/metabolismo , Coxiella burnetii/patogenicidade , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Vacúolos/microbiologia , Vacúolos/metabolismo , Animais , Febre Q/microbiologia , Células HeLa , Linhagem Celular , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Técnicas de Inativação de Genes , Mariposas/microbiologia , Interações Hospedeiro-Patógeno , Células THP-1
7.
Nat Commun ; 14(1): 6804, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884510

RESUMO

The necroptosis pathway is a lytic, pro-inflammatory mode of cell death that is widely implicated in human disease, including renal, pulmonary, gut and skin inflammatory pathologies. The precise mechanism of the terminal steps in the pathway, where the RIPK3 kinase phosphorylates and triggers a conformation change and oligomerization of the terminal pathway effector, MLKL, are only emerging. Here, we structurally identify RIPK3-mediated phosphorylation of the human MLKL activation loop as a cue for MLKL pseudokinase domain dimerization. MLKL pseudokinase domain dimerization subsequently drives formation of elongated homotetramers. Negative stain electron microscopy and modelling support nucleation of the MLKL tetramer assembly by a central coiled coil formed by the extended, ~80 Å brace helix that connects the pseudokinase and executioner four-helix bundle domains. Mutational data assert MLKL tetramerization as an essential prerequisite step to enable the release and reorganization of four-helix bundle domains for membrane permeabilization and cell death.


Assuntos
Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Fosforilação , Necrose , Proteínas Quinases/metabolismo , Dimerização , Morte Celular , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose
8.
Cell Death Differ ; 30(4): 1059-1071, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36755069

RESUMO

MLKL and RIPK3 are the core signaling proteins of the inflammatory cell death pathway, necroptosis, which is a known mediator and modifier of human disease. Necroptosis has been implicated in the progression of disease in almost every physiological system and recent reports suggest a role for necroptosis in aging. Here, we present the first comprehensive analysis of age-related histopathological and immunological phenotypes in a cohort of Mlkl-/- and Ripk3-/- mice on a congenic C57BL/6 J genetic background. We show that genetic deletion of Mlkl in female mice interrupts immune system aging, specifically delaying the age-related reduction of circulating lymphocytes. -Seventeen-month-old Mlkl-/- female mice were also protected against age-related chronic sterile inflammation in connective tissue and skeletal muscle relative to wild-type littermate controls, exhibiting a reduced number of immune cell infiltrates in these sites and fewer regenerating myocytes. These observations implicate MLKL in age-related sterile inflammation, suggesting a possible application for long-term anti-necroptotic therapy in humans.


Assuntos
Inflamação , Proteínas Quinases , Camundongos , Humanos , Feminino , Animais , Lactente , Necrose/metabolismo , Proteínas Quinases/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/patologia , Morte Celular , Fatores de Transcrição/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
9.
Nat Commun ; 14(1): 6046, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770424

RESUMO

Across the globe, 2-3% of humans carry the p.Ser132Pro single nucleotide polymorphism in MLKL, the terminal effector protein of the inflammatory form of programmed cell death, necroptosis. Here we show that this substitution confers a gain in necroptotic function in human cells, with more rapid accumulation of activated MLKLS132P in biological membranes and MLKLS132P overriding pharmacological and endogenous inhibition of MLKL. In mouse cells, the equivalent Mlkl S131P mutation confers a gene dosage dependent reduction in sensitivity to TNF-induced necroptosis in both hematopoietic and non-hematopoietic cells, but enhanced sensitivity to IFN-ß induced death in non-hematopoietic cells. In vivo, MlklS131P homozygosity reduces the capacity to clear Salmonella from major organs and retards recovery of hematopoietic stem cells. Thus, by dysregulating necroptosis, the S131P substitution impairs the return to homeostasis after systemic challenge. Present day carriers of the MLKL S132P polymorphism may be the key to understanding how MLKL and necroptosis modulate the progression of complex polygenic human disease.


Assuntos
Apoptose , Proteínas Quinases , Humanos , Animais , Camundongos , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Membrana Celular/metabolismo , Mutação , Fatores de Transcrição/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
10.
Cell Death Differ ; 29(9): 1804-1815, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264780

RESUMO

Necroptosis is a lytic programmed cell death pathway with origins in innate immunity that is frequently dysregulated in inflammatory diseases. The terminal effector of the pathway, MLKL, is licensed to kill following phosphorylation of its pseudokinase domain by the upstream regulator, RIPK3 kinase. Phosphorylation provokes the unleashing of MLKL's N-terminal four-helix bundle (4HB or HeLo) domain, which binds and permeabilizes the plasma membrane to cause cell death. The precise mechanism by which the 4HB domain permeabilizes membranes, and how the mechanism differs between species, remains unclear. Here, we identify the membrane binding epitope of mouse MLKL using NMR spectroscopy. Using liposome permeabilization and cell death assays, we validate K69 in the α3 helix, W108 in the α4 helix, and R137/Q138 in the first brace helix as crucial residues for necroptotic signaling. This epitope differs from the phospholipid binding site reported for human MLKL, which comprises basic residues primarily located in the α1 and α2 helices. In further contrast to human and plant MLKL orthologs, in which the α3-α4 loop forms a helix, this loop is unstructured in mouse MLKL in solution. Together, these findings illustrate the versatility of the 4HB domain fold, whose lytic function can be mediated by distinct epitopes in different orthologs.


Assuntos
Necroptose , Proteínas Quinases , Animais , Epitopos , Humanos , Camundongos , Necrose , Fosforilação , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
11.
iScience ; 25(7): 104632, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35800780

RESUMO

Pathogen recognition and TNF receptors signal via receptor interacting serine/threonine kinase-3 (RIPK3) to cause cell death, including MLKL-mediated necroptosis and caspase-8-dependent apoptosis. However, the post-translational control of RIPK3 is not fully understood. Using mass-spectrometry, we identified that RIPK3 is ubiquitylated on K469. The expression of mutant RIPK3 K469R demonstrated that RIPK3 ubiquitylation can limit both RIPK3-mediated apoptosis and necroptosis. The enhanced cell death of overexpressed RIPK3 K469R and activated endogenous RIPK3 correlated with an overall increase in RIPK3 ubiquitylation. Ripk3 K469R/K469R mice challenged with Salmonella displayed enhanced bacterial loads and reduced serum IFNγ. However, Ripk3 K469R/K469R macrophages and dermal fibroblasts were not sensitized to RIPK3-mediated apoptotic or necroptotic signaling suggesting that, in these cells, there is functional redundancy with alternate RIPK3 ubiquitin-modified sites. Consistent with this idea, the mutation of other ubiquitylated RIPK3 residues also increased RIPK3 hyper-ubiquitylation and cell death. Therefore, the targeted ubiquitylation of RIPK3 may act as either a brake or accelerator of RIPK3-dependent killing.

12.
Biomolecules ; 11(6)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071602

RESUMO

Necroptosis is an inflammatory form of lytic programmed cell death that is thought to have evolved to defend against pathogens. Genetic deletion of the terminal effector protein-MLKL-shows no overt phenotype in the C57BL/6 mouse strain under conventional laboratory housing conditions. Small molecules that inhibit necroptosis by targeting the kinase activity of RIPK1, one of the main upstream conduits to MLKL activation, have shown promise in several murine models of non-infectious disease and in phase II human clinical trials. This has triggered in excess of one billion dollars (USD) in investment into the emerging class of necroptosis blocking drugs, and the potential utility of targeting the terminal effector is being closely scrutinised. Here we review murine models of disease, both genetic deletion and mutation, that investigate the role of MLKL. We summarize a series of examples from several broad disease categories including ischemia reperfusion injury, sterile inflammation, pathogen infection and hematological stress. Elucidating MLKL's contribution to mouse models of disease is an important first step to identify human indications that stand to benefit most from MLKL-targeted drug therapies.


Assuntos
Modelos Animais de Doenças , Necroptose , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases , Animais , Humanos , Camundongos , Necroptose/efeitos dos fármacos , Necroptose/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
13.
Sci Signal ; 14(668)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531383

RESUMO

Necroptosis is a lytic, proinflammatory cell death pathway, which has been implicated in host defense and, when dysregulated, the pathology of many human diseases. The central mediators of this pathway are the receptor-interacting serine/threonine protein kinases RIPK1 and RIPK3 and the terminal executioner, the pseudokinase mixed lineage kinase domain-like (MLKL). Here, we review the chronology of signaling along the RIPK1-RIPK3-MLKL axis and highlight how the subcellular compartmentalization of signaling events controls the initiation and execution of necroptosis. We propose that a network of modulators surrounds the necroptotic signaling core and that this network, rather than acting universally, tunes necroptosis in a context-, cell type-, and species-dependent manner. Such a high degree of mechanistic flexibility is likely an important property that helps necroptosis operate as a robust, emergency form of cell death.


Assuntos
Necroptose , Proteínas Quinases/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Animais , Humanos , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
14.
Nat Commun ; 12(1): 6783, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811356

RESUMO

The ancestral origins of the lytic cell death mode, necroptosis, lie in host defense. However, the dysregulation of necroptosis in inflammatory diseases has led to widespread interest in targeting the pathway therapeutically. This mode of cell death is executed by the terminal effector, the MLKL pseudokinase, which is licensed to kill following phosphorylation by its upstream regulator, RIPK3 kinase. The precise molecular details underlying MLKL activation are still emerging and, intriguingly, appear to mechanistically-diverge between species. Here, we report the structure of the human RIPK3 kinase domain alone and in complex with the MLKL pseudokinase. These structures reveal how human RIPK3 structurally differs from its mouse counterpart, and how human RIPK3 maintains MLKL in an inactive conformation prior to induction of necroptosis. Residues within the RIPK3:MLKL C-lobe interface are crucial to complex assembly and necroptotic signaling in human cells, thereby rationalizing the strict species specificity governing RIPK3 activation of MLKL.


Assuntos
Morte Celular/fisiologia , Necroptose/fisiologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Morte Celular/genética , Células HT29 , Humanos , Camundongos , Necroptose/genética , Fosforilação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas Recombinantes , Transdução de Sinais
15.
Nat Commun ; 12(1): 2211, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850121

RESUMO

Phosphorylation of the MLKL pseudokinase by the RIPK3 kinase leads to MLKL oligomerization, translocation to, and permeabilization of, the plasma membrane to induce necroptotic cell death. The precise choreography of MLKL activation remains incompletely understood. Here, we report Monobodies, synthetic binding proteins, that bind the pseudokinase domain of MLKL within human cells and their crystal structures in complex with the human MLKL pseudokinase domain. While Monobody-32 constitutively binds the MLKL hinge region, Monobody-27 binds MLKL via an epitope that overlaps the RIPK3 binding site and is only exposed after phosphorylated MLKL disengages from RIPK3 following necroptotic stimulation. The crystal structures identified two distinct conformations of the MLKL pseudokinase domain, supporting the idea that a conformational transition accompanies MLKL disengagement from RIPK3. These studies provide further evidence that MLKL undergoes a large conformational change upon activation, and identify MLKL disengagement from RIPK3 as a key regulatory step in the necroptosis pathway.


Assuntos
Morte Celular/fisiologia , Necroptose/fisiologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Sítios de Ligação , Membrana Celular , Cristalografia por Raios X , Células HT29 , Humanos , Camundongos , Conformação Molecular , Simulação de Dinâmica Molecular , Mutação , Fosforilação , Conformação Proteica , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas Recombinantes , Alinhamento de Sequência , Células U937
16.
Nat Commun ; 11(1): 3060, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561735

RESUMO

The MLKL pseudokinase is the terminal effector in the necroptosis cell death pathway. Phosphorylation by its upstream regulator, RIPK3, triggers MLKL's conversion from a dormant cytoplasmic protein into oligomers that translocate to, and permeabilize, the plasma membrane to kill cells. The precise mechanisms underlying these processes are incompletely understood, and were proposed to differ between mouse and human cells. Here, we examine the divergence of activation mechanisms among nine vertebrate MLKL orthologues, revealing remarkable specificity of mouse and human RIPK3 for MLKL orthologues. Pig MLKL can restore necroptotic signaling in human cells; while horse and pig, but not rat, MLKL can reconstitute the mouse pathway. This selectivity can be rationalized from the distinct conformations observed in the crystal structures of horse and rat MLKL pseudokinase domains. These studies identify important differences in necroptotic signaling between species, and suggest that, more broadly, divergent regulatory mechanisms may exist among orthologous pseudoenzymes.


Assuntos
Proteínas Quinases/química , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Animais , Galinhas , Cristalografia por Raios X , Citoplasma/enzimologia , Células HEK293 , Cavalos , Humanos , Camundongos , Necroptose , Necrose/metabolismo , Fosforilação , Conformação Proteica , Ratos , Transdução de Sinais , Smegmamorpha , Suínos , Células U937 , Xenopus
17.
ACS Chem Biol ; 15(10): 2702-2713, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32902249

RESUMO

Necroptosis is an inflammatory form of programmed cell death that has been implicated in various human diseases. Compound 2 is a more potent analogue of the published compound 1 and inhibits necroptosis in human and murine cells at nanomolar concentrations. Several target engagement strategies were employed, including cellular thermal shift assays (CETSA) and diazirine-mediated photoaffinity labeling via a bifunctional photoaffinity probe derived from compound 2. These target engagement studies demonstrate that compound 2 binds to all three necroptotic effector proteins (mixed lineage kinase domain-like protein (MLKL), receptor-interacting serine/threonine protein kinase 1 (RIPK1) and receptor-interacting serine/threonine protein kinase 3 (RIPK3)) at different levels in vitro and in cells. Compound 2 also shows efficacy in vivo in a murine model of systemic inflammatory response syndrome (SIRS).


Assuntos
Necroptose/efeitos dos fármacos , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Endogâmicos C57BL , Compostos de Fenilureia/metabolismo , Compostos de Fenilureia/farmacocinética , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico
18.
Nat Commun ; 11(1): 3151, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561730

RESUMO

Mixed lineage kinase domain-like (MLKL) is the terminal protein in the pro-inflammatory necroptotic cell death program. RIPK3-mediated phosphorylation is thought to initiate MLKL oligomerization, membrane translocation and membrane disruption, although the precise choreography of events is incompletely understood. Here, we use single-cell imaging approaches to map the chronology of endogenous human MLKL activation during necroptosis. During the effector phase of necroptosis, we observe that phosphorylated MLKL assembles into higher order species on presumed cytoplasmic necrosomes. Subsequently, MLKL co-traffics with tight junction proteins to the cell periphery via Golgi-microtubule-actin-dependent mechanisms. MLKL and tight junction proteins then steadily co-accumulate at the plasma membrane as heterogeneous micron-sized hotspots. Our studies identify MLKL trafficking and plasma membrane accumulation as crucial necroptosis checkpoints. Furthermore, the accumulation of phosphorylated MLKL at intercellular junctions accelerates necroptosis between neighbouring cells, which may be relevant to inflammatory bowel disease and other necroptosis-mediated enteropathies.


Assuntos
Necroptose , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Transporte Proteico , Proteínas de Junções Íntimas/metabolismo
19.
Nat Commun ; 11(1): 3150, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561755

RESUMO

MLKL is the essential effector of necroptosis, a form of programmed lytic cell death. We have isolated a mouse strain with a single missense mutation, MlklD139V, that alters the two-helix 'brace' that connects the killer four-helix bundle and regulatory pseudokinase domains. This confers constitutive, RIPK3 independent killing activity to MLKL. Homozygous mutant mice develop lethal postnatal inflammation of the salivary glands and mediastinum. The normal embryonic development of MlklD139V homozygotes until birth, and the absence of any overt phenotype in heterozygotes provides important in vivo precedent for the capacity of cells to clear activated MLKL. These observations offer an important insight into the potential disease-modulating roles of three common human MLKL polymorphisms that encode amino acid substitutions within or adjacent to the brace region. Compound heterozygosity of these variants is found at up to 12-fold the expected frequency in patients that suffer from a pediatric autoinflammatory disease, chronic recurrent multifocal osteomyelitis (CRMO).


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Sistema Hematopoético/patologia , Necroptose/genética , Proteínas Quinases/genética , Animais , Animais Recém-Nascidos , Doenças Hereditárias Autoinflamatórias , Humanos , Inflamação/genética , Camundongos , Mutação de Sentido Incorreto , Osteomielite/genética , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA