Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell ; 186(7): 1448-1464.e20, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001504

RESUMO

Neutrophils accumulate in solid tumors, and their abundance correlates with poor prognosis. Neutrophils are not homogeneous, however, and could play different roles in cancer therapy. Here, we investigate the role of neutrophils in immunotherapy, leading to tumor control. We show that successful therapies acutely expanded tumor neutrophil numbers. This expansion could be attributed to a Sellhi state rather than to other neutrophils that accelerate tumor progression. Therapy-elicited neutrophils acquired an interferon gene signature, also seen in human patients, and appeared essential for successful therapy, as loss of the interferon-responsive transcription factor IRF1 in neutrophils led to failure of immunotherapy. The neutrophil response depended on key components of anti-tumor immunity, including BATF3-dependent DCs, IL-12, and IFNγ. In addition, we found that a therapy-elicited systemic neutrophil response positively correlated with disease outcome in lung cancer patients. Thus, we establish a crucial role of a neutrophil state in mediating effective cancer therapy.


Assuntos
Neoplasias Pulmonares , Neutrófilos , Humanos , Neoplasias Pulmonares/genética , Transdução de Sinais/genética , Imunoterapia , Interferons
2.
Nat Immunol ; 25(6): 1033-1045, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38745085

RESUMO

The etiology and effect of age-related immune dysfunction in cancer is not completely understood. Here we show that limited priming of CD8+ T cells in the aged tumor microenvironment (TME) outweighs cell-intrinsic defects in limiting tumor control. Increased tumor growth in aging is associated with reduced CD8+ T cell infiltration and function. Transfer of T cells from young mice does not restore tumor control in aged mice owing to rapid induction of T cell dysfunction. Cell-extrinsic signals in the aged TME drive a tumor-infiltrating age-associated dysfunctional (TTAD) cell state that is functionally, transcriptionally and epigenetically distinct from canonical T cell exhaustion. Altered natural killer cell-dendritic cell-CD8+ T cell cross-talk in aged tumors impairs T cell priming by conventional type 1 dendritic cells and promotes TTAD cell formation. Aged mice are thereby unable to benefit from therapeutic tumor vaccination. Critically, myeloid-targeted therapy to reinvigorate conventional type 1 dendritic cells can improve tumor control and restore CD8+ T cell immunity in aging.


Assuntos
Envelhecimento , Linfócitos T CD8-Positivos , Células Dendríticas , Microambiente Tumoral , Animais , Microambiente Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Camundongos , Células Dendríticas/imunologia , Envelhecimento/imunologia , Camundongos Endogâmicos C57BL , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Humanos , Neoplasias/imunologia , Linhagem Celular Tumoral , Feminino , Ativação Linfocitária/imunologia
3.
Immunity ; 56(10): 2218-2230, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37708889

RESUMO

In cancer patients, dendritic cells (DCs) in tumor-draining lymph nodes can present antigens to naive T cells in ways that break immunological tolerance. The clonally expanded progeny of primed T cells are further regulated by DCs at tumor sites. Intratumoral DCs can both provide survival signals to and drive effector differentiation of incoming T cells, thereby locally enhancing antitumor immunity; however, the paucity of intratumoral DCs or their expression of immunoregulatory molecules often limits antitumor T cell responses. Here, we review the current understanding of DC-T cell interactions at both priming and effector sites of immune responses. We place emerging insights into DC functions in tumor immunity in the context of DC development, ontogeny, and functions in other settings and propose that DCs control at least two T cell-associated checkpoints of the cancer immunity cycle. Our understanding of both checkpoints has implications for the development of new approaches to cancer immunotherapy.

4.
Cell ; 161(7): 1492-3, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26091029

RESUMO

XBP1 is part of the ER stress response, and when activated in cancer cells, it fosters tumor growth. In this issue of Cell, Cubillos-Ruiz et al. demonstrate that XBP1 in tumor-infiltrating dendritic cells blunts anti-tumor immunity. These findings further imply XBP1 as a relevant target for cancer therapy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células Dendríticas/patologia , Estresse do Retículo Endoplasmático , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Fatores de Transcrição/metabolismo , Animais , Feminino , Humanos
5.
Nature ; 620(7976): 1080-1088, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612508

RESUMO

Chromosomal instability (CIN) is a driver of cancer metastasis1-4, yet the extent to which this effect depends on the immune system remains unknown. Using ContactTracing-a newly developed, validated and benchmarked tool to infer the nature and conditional dependence of cell-cell interactions from single-cell transcriptomic data-we show that CIN-induced chronic activation of the cGAS-STING pathway promotes downstream signal re-wiring in cancer cells, leading to a pro-metastatic tumour microenvironment. This re-wiring is manifested by type I interferon tachyphylaxis selectively downstream of STING and a corresponding increase in cancer cell-derived endoplasmic reticulum (ER) stress response. Reversal of CIN, depletion of cancer cell STING or inhibition of ER stress response signalling abrogates CIN-dependent effects on the tumour microenvironment and suppresses metastasis in immune competent, but not severely immune compromised, settings. Treatment with STING inhibitors reduces CIN-driven metastasis in melanoma, breast and colorectal cancers in a manner dependent on tumour cell-intrinsic STING. Finally, we show that CIN and pervasive cGAS activation in micronuclei are associated with ER stress signalling, immune suppression and metastasis in human triple-negative breast cancer, highlighting a viable strategy to identify and therapeutically intervene in tumours spurred by CIN-induced inflammation.


Assuntos
Instabilidade Cromossômica , Progressão da Doença , Neoplasias , Humanos , Benchmarking , Comunicação Celular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/imunologia , Melanoma/patologia , Microambiente Tumoral , Interferon Tipo I/imunologia , Metástase Neoplásica , Estresse do Retículo Endoplasmático , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia
6.
Immunity ; 51(5): 899-914.e7, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31732166

RESUMO

Myocardial infarction, stroke, and sepsis trigger systemic inflammation and organism-wide complications that are difficult to manage. Here, we examined the contribution of macrophages residing in vital organs to the systemic response after these injuries. We generated a comprehensive catalog of changes in macrophage number, origin, and gene expression in the heart, brain, liver, kidney, and lung of mice with myocardial infarction, stroke, or sepsis. Predominantly fueled by heightened local proliferation, tissue macrophage numbers increased systemically. Macrophages in the same organ responded similarly to different injuries by altering expression of tissue-specific gene sets. Preceding myocardial infarction improved survival of subsequent pneumonia due to enhanced bacterial clearance, which was caused by IFNÉ£ priming of alveolar macrophages. Conversely, EGF receptor signaling in macrophages exacerbated inflammatory lung injury. Our data suggest that local injury activates macrophages in remote organs and that targeting macrophages could improve resilience against systemic complications following myocardial infarction, stroke, and sepsis.


Assuntos
Suscetibilidade a Doenças , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Biomarcadores , Contagem de Células , Suscetibilidade a Doenças/imunologia , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Isquemia/etiologia , Isquemia/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Células Musculares/imunologia , Células Musculares/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/patologia
7.
Immunity ; 49(6): 1148-1161.e7, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30552023

RESUMO

Anti-PD-1 immune checkpoint blockers can induce sustained clinical responses in cancer but how they function in vivo remains incompletely understood. Here, we combined intravital real-time imaging with single-cell RNA sequencing analysis and mouse models to uncover anti-PD-1 pharmacodynamics directly within tumors. We showed that effective antitumor responses required a subset of tumor-infiltrating dendritic cells (DCs), which produced interleukin 12 (IL-12). These DCs did not bind anti-PD-1 but produced IL-12 upon sensing interferon γ (IFN-γ) that was released from neighboring T cells. In turn, DC-derived IL-12 stimulated antitumor T cell immunity. These findings suggest that full-fledged activation of antitumor T cells by anti-PD-1 is not direct, but rather involves T cell:DC crosstalk and is licensed by IFN-γ and IL-12. Furthermore, we found that activating the non-canonical NF-κB transcription factor pathway amplified IL-12-producing DCs and sensitized tumors to anti-PD-1 treatment, suggesting a therapeutic strategy to improve responses to checkpoint blockade.


Assuntos
Células Dendríticas/imunologia , Interferon gama/imunologia , Interleucina-12/imunologia , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Células Dendríticas/metabolismo , Feminino , Humanos , Imunoterapia/métodos , Interferon gama/metabolismo , Interleucina-12/administração & dosagem , Interleucina-12/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , NF-kappa B/imunologia , NF-kappa B/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
9.
Nat Immunol ; 14(11): 1166-72, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24076635

RESUMO

Sphingosine 1-phosphate (S1P) signaling regulates lymphocyte egress from lymphoid organs into systemic circulation. The sphingosine phosphate receptor 1 (S1P1) agonist FTY-720 (Gilenya) arrests immune trafficking and prevents multiple sclerosis (MS) relapses. However, alternative mechanisms of S1P-S1P1 signaling have been reported. Phosphoproteomic analysis of MS brain lesions revealed S1P1 phosphorylation on S351, a residue crucial for receptor internalization. Mutant mice harboring an S1pr1 gene encoding phosphorylation-deficient receptors (S1P1(S5A)) developed severe experimental autoimmune encephalomyelitis (EAE) due to autoimmunity mediated by interleukin 17 (IL-17)-producing helper T cells (TH17 cells) in the peripheral immune and nervous system. S1P1 directly activated the Jak-STAT3 signal-transduction pathway via IL-6. Impaired S1P1 phosphorylation enhances TH17 polarization and exacerbates autoimmune neuroinflammation. These mechanisms may be pathogenic in MS.


Assuntos
Encéfalo/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Interleucina-17/metabolismo , Lisofosfolipídeos/metabolismo , Esclerose Múltipla/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/imunologia , Esfingosina/análogos & derivados , Animais , Autopsia , Encéfalo/imunologia , Encéfalo/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Janus Quinases/genética , Janus Quinases/imunologia , Janus Quinases/metabolismo , Lisofosfolipídeos/imunologia , Camundongos , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Fosforilação , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/imunologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT3/metabolismo , Esfingosina/imunologia , Esfingosina/metabolismo , Células Th17
10.
Immunity ; 44(2): 343-54, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26872698

RESUMO

Checkpoint blockade immunotherapies can be extraordinarily effective, but might benefit only the minority of patients whose tumors are pre-infiltrated by T cells. Here, using lung adenocarcinoma mouse models, including genetic models, we show that autochthonous tumors that lacked T cell infiltration and resisted current treatment options could be successfully sensitized to host antitumor T cell immunity when appropriately selected immunogenic drugs (e.g., oxaliplatin combined with cyclophosphamide for treatment against tumors expressing oncogenic Kras and lacking Trp53) were used. The antitumor response was triggered by direct drug actions on tumor cells, relied on innate immune sensing through toll-like receptor 4 signaling, and ultimately depended on CD8(+) T cell antitumor immunity. Furthermore, instigating tumor infiltration by T cells sensitized tumors to checkpoint inhibition and controlled cancer durably. These findings indicate that the proportion of cancers responding to checkpoint therapy can be feasibly and substantially expanded by combining checkpoint blockade with immunogenic drugs.


Assuntos
Adenocarcinoma/terapia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Imunoterapia/métodos , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Adenocarcinoma/imunologia , Animais , Linhagem Celular Tumoral , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Ciclofosfamida/administração & dosagem , Modelos Animais de Doenças , Tratamento Farmacológico/métodos , Genes cdc/efeitos dos fármacos , Humanos , Imunidade Inata , Neoplasias Pulmonares/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compostos Organoplatínicos/administração & dosagem , Oxaliplatina , Receptor 4 Toll-Like/metabolismo
11.
Br J Cancer ; 124(9): 1491-1502, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731858

RESUMO

Most cancer deaths are caused by metastasis: recurrence of disease by disseminated tumour cells at sites distant from the primary tumour. Large numbers of disseminated tumour cells are released from the primary tumour, even during the early stages of tumour growth. However, only a minority survive as potential seeds for future metastatic outgrowths. These cells must adapt to a relatively inhospitable microenvironment, evade immune surveillance and progress from the micro- to macro-metastatic stage to generate a secondary tumour. A pervasive driver of this transition is chronic inflammatory signalling emanating from tumour cells themselves. These signals can promote migration and engagement of stem and progenitor cell function, events that are also central to a wound healing response. In this review, we revisit the concept of cancer as a non-healing wound, first introduced by Virchow in the 19th century, with a new tumour cell-intrinsic perspective on inflammation and focus on metastasis. Cellular responses to inflammation in both wound healing and metastasis are tightly regulated by crosstalk with the surrounding microenvironment. Targeting or restoring canonical responses to inflammation could represent a novel strategy to prevent the lethal spread of cancer.


Assuntos
Inflamação/patologia , Neoplasias/patologia , Microambiente Tumoral/imunologia , Cicatrização , Animais , Humanos , Inflamação/imunologia , Metástase Neoplásica , Neoplasias/imunologia , Transdução de Sinais
12.
Immunology ; 142(3): 347-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24597601

RESUMO

Sphingosine-1-phosphate (S1P) is a lipid second messenger that signals via five G protein-coupled receptors (S1P1-5 ). S1P receptor (S1PR) signalling is associated with a wide variety of physiological processes including lymphocyte biology, their recirculation and determination of T-cell phenotypes. The effect of FTY720 (Fingolimod, Gilenya™) to regulate lymphocyte egress and to ameliorate paralysis in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis led to the use of FTY720 as a first-line oral agent for treatment of relapsing-remitting multiple sclerosis. However, a significant body of research suggests that S1P signalling may participate in diverse immune regulatory functions other than lymphocyte trafficking. This review article discusses the current knowledge of S1P signalling in the fate and function of T regulatory, T helper type 17 and memory T cells in health and disease.


Assuntos
Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Humanos , Receptores de Esfingosina-1-Fosfato , Linfócitos T/citologia
13.
Front Immunol ; 15: 1331480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545103

RESUMO

Macrophages are critical regulators of the tumor microenvironment and often present an immuno-suppressive phenotype, supporting tumor growth and immune evasion. Promoting a robust pro-inflammatory macrophage phenotype has emerged as a therapeutic modality that supports tumor clearance, including through synergy with immune checkpoint therapies. Polyglucose nanoparticles (macrins), which possess high macrophage affinity, are useful vehicles for delivering drugs to macrophages, potentially altering their phenotype. Here, we examine the potential of functionalized macrins, synthesized by crosslinking carboxymethyl dextran with L-lysine, as effective carriers of immuno-stimulatory drugs to tumor-associated macrophages (TAMs). Azide groups incorporated during particle synthesis provided a handle for click-coupling of propargyl-modified ß-cyclodextrin to macrins under mild conditions. Fluorescence-based competitive binding assays revealed the ability of ß-cyclodextrin to non-covalently bind to hydrophobic immuno-stimulatory drug candidates (Keq ~ 103 M-1), enabling drug loading within nanoparticles. Furthermore, transcriptional profiles of macrophages indicated robust pro-inflammatory reprogramming (elevated Nos2 and Il12; suppressed Arg1 and Mrc1 expression levels) for a subset of these immuno-stimulatory agents (UNC2025 and R848). Loading of R848 into the modified macrins improved the drug's effect on primary murine macrophages by three-fold in vitro. Intravital microscopy in IL-12-eYFP reporter mice (24 h post-injection) revealed a two-fold enhancement in mean YFP fluorescence intensity in macrophages targeted with R848-loaded macrins, relative to vehicle controls, validating the desired pro-inflammatory reprogramming of TAMs in vivo by cell-targeted drug delivery. Finally, in an intradermal MC38 tumor model, cyclodextrin-modified macrin NPs loaded with immunostimulatory drugs significantly reduced tumor growth. Therefore, efficient and effective repolarization of tumor-associated macrophages to an M1-like phenotype-via drug-loaded macrins-inhibits tumor growth and may be useful as an adjuvant to existing immune checkpoint therapies.


Assuntos
Nanopartículas , Neoplasias , beta-Ciclodextrinas , Animais , Camundongos , Preparações Farmacêuticas , Macrófagos Associados a Tumor , Nanopartículas/química , Fenótipo , Microambiente Tumoral
14.
Theranostics ; 14(7): 2934-2945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773971

RESUMO

Rationale: Nucleic acid constructs are commonly used for vaccination, immune stimulation, and gene therapy, but their use in cancer still remains limited. One of the reasons is that systemic delivery to tumor-associated antigen-presenting cells (dendritic cells and macrophages) is often inefficient, while off-target nucleic acid-sensing immune pathways can stimulate systemic immune responses. Conversely, certain carbohydrate nanoparticles with small molecule payloads have been shown to target these cells efficiently in the tumor microenvironment. Yet, nucleic acid incorporation into such carbohydrate-based nanoparticles has proven challenging. Methods: We developed a novel approach using cross-linked bis succinyl-cyclodextrin (b-s-CD) nanoparticles to efficiently deliver nucleic acids and small-molecule immune enhancer to phagocytic cells in tumor environments and lymph nodes. Our study involved incorporating these components into the nanoparticles and assessing their efficacy in activating antigen-presenting cells. Results: The multi-modality immune stimulators effectively activated antigen-presenting cells and promoted anti-tumor immunity in vivo. This was evidenced by enhanced delivery to phagocytic cells and subsequent immune response activation in tumor environments and lymph nodes. Conclusion: Here, we describe a new approach to incorporating both nucleic acids and small-molecule immune enhancers into cross-linked bis succinyl-cyclodextrin (b-s-CD) nanoparticles for efficient delivery to phagocytic cells in tumor environments and lymph nodes in vivo. These multi-modality immune stimulators can activate antigen-presenting cells and foster anti-tumor immunity. We argue that this strategy can potentially be used to enhance anti-tumor efficacy.


Assuntos
Células Dendríticas , Nanopartículas , Ácidos Nucleicos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Animais , Ácidos Nucleicos/administração & dosagem , Camundongos , Nanopartículas/química , Ciclodextrinas/química , Camundongos Endogâmicos C57BL , Humanos , Linhagem Celular Tumoral , Tropismo , Microambiente Tumoral/efeitos dos fármacos , Linfonodos/imunologia , Feminino , Neoplasias/terapia , Neoplasias/imunologia
15.
Adv Sci (Weinh) ; 11(15): e2309026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342608

RESUMO

Tumor-associated macrophages (TAM) are a diverse population of myeloid cells that are often abundant and immunosuppressive in human cancers. CXCL9Hi TAM has recently been described to have an antitumor phenotype and is linked to immune checkpoint response. Despite the emerging understanding of the unique antitumor TAM phenotype, there is a lack of TAM-specific therapeutics to exploit this new biological understanding. Here, the discovery and characterization of multiple small-molecule enhancers of chemokine ligand 9 (CXCL9) and their targeted delivery in a TAM-avid systemic nanoformulation is reported. With this strategy, it is efficient encapsulation and release of multiple drug loads that can efficiently induce CXCL9 expression in macrophages, both in vitro and in vivo in a mouse tumor model. These observations provide a window into the molecular features that define TAM-specific states, an insight a novel therapeutic anticancer approach is used to discover.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Animais , Humanos , Camundongos , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Macrófagos/metabolismo , Neoplasias/patologia , Fenótipo
16.
ACS Nano ; 17(20): 20666-20679, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37824733

RESUMO

Tumor-associated macrophages (TAM) interact with cancer and stromal cells and are integral to sustaining many cancer-promoting features. Therapeutic manipulation of TAM could therefore improve clinical outcomes and synergize with immunotherapy and other cancer therapies. While different nanocarriers have been used to target TAM, a knowledge gap exists on which TAM pathways to target and what payloads to deliver for optimal antitumor effects. We hypothesized that a multipart combination involving the Janus tyrosine kinase (JAK), noncanonical nuclear factor kappa light chain enhancer of activated B cells (NF-κB), and toll-like receptor (TLR) pathways could lead to a highly active myeloid therapy (HAMT). Thus, we devised a screen to determine drug combinations that yield maximum IL-12 production from myeloid cells to treat the otherwise highly immunosuppressive myeloid environments in tumors. Here we show the extraordinary efficacy of a triple small-molecule combination in a TAM-targeted nanoparticle for eradicating murine tumors, jumpstarting a highly efficient antitumor response by adopting a distinctive antitumor TAM phenotype and synergizing with other immunotherapies. The HAMT therapy represents a recently developed approach in immunotherapy and leads to durable responses in murine cancer models.


Assuntos
Neoplasias , Animais , Camundongos , Neoplasias/tratamento farmacológico , Células Mieloides , Imunoterapia
17.
Adv Mater ; 35(7): e2208782, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427266

RESUMO

Myeloid cells are abundant, create a highly immunosuppressive environment in glioblastoma (GBM), and thus contribute to poor immunotherapy responses. Based on the hypothesis that small molecules can be used to stimulate myeloid cells to elicit anti-tumor effector functions, a synthetic nanoparticle approach is developed to deliver dual NF-kB pathway-inducing agents into these cells via systemic administration. Synthetic, cyclodextrin-adjuvant nanoconstructs (CANDI) with high affinity for tumor-associated myeloid cells are dually loaded with a TLR7 and 8 (Toll-like receptor, 7 and 8) agonist (R848) and a cIAP (cellular inhibitor of apoptosis protein) inhibitor (LCL-161) to dually activate these myeloid cells. Here CANDI is shown to: i) readily enter the GBM tumor microenvironment (TME) and accumulate at high concentrations, ii) is taken up by tumor-associated myeloid cells, iii) potently synergize payloads compared to monotherapy, iv) activate myeloid cells, v) fosters a "hot" TME with high levels of T effector cells, and vi) controls the growth of murine GBM as mono- and combination therapies with anti-PD1. Multi-pathway targeted myeloid stimulation via the CANDI platform can efficiently drive anti-tumor immunity in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Glioblastoma/patologia , Imunoterapia , Células Mieloides/metabolismo , Células Mieloides/patologia , Adjuvantes Imunológicos , Microambiente Tumoral , Neoplasias Encefálicas/patologia
18.
Adv Sci (Weinh) ; 10(33): e2303576, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37814359

RESUMO

The efficient activation of professional antigen-presenting cells-such as dendritic cells (DC)-in tumors and lymph nodes is critical for the design of next-generation cancer vaccines and may be able to provide anti-tumor effects by itself through immune stimulation. The challenge is to stimulate these cells without causing excessive toxicity. It is hypothesized that a multi-pronged combinatorial approach to DC stimulation would allow dose reductions of innate immune receptor-stimulating TLR3 agonists while enhancing drug efficacy. Here, a hybrid lipid nanoparticle (LNP) platform is developed and tested for double-stranded RNA (polyinosinic:polycytidylic acid for TLR3 agonism) and immune modulator (L-CANDI) delivery. This study shows that the ≈120 nm hybrid nanoparticles-in-nanoparticles effectively eradicate tumors by themselves and generate long-lasting, durable anti-tumor immunity in mouse models.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Camundongos , Receptor 3 Toll-Like , Poli I-C/farmacologia , Neoplasias/patologia , Células Dendríticas
19.
J Immunol ; 185(1): 166-73, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20511552

RESUMO

Ab class switch recombination involves a recombination between two repetitive DNA sequences known as switch (S) regions that vary in length, content, and density of the repeats. Abs expressed by B cells are diversified by somatic hypermutation and class switch recombination. Both class switch recombination and somatic hypermutation are initiated by activation-induced cytidine deaminase (AID), which preferentially recognizes certain hot spots that are far more enriched in the S regions. We found that removal of the largest S region, Sgamma1 (10 kb), in mice can result in the accumulation of mutations and short-range intra-S recombination in the donor Smu region. Furthermore, elevated levels of IgE were detected in trinitrophenol-OVA-immunized mice and in anti-CD40 plus IL-4-stimulated B cells in vitro. We propose that AID availability and targeting in part might be regulated by its DNA substrate. Thus, prominently transcribed S regions, such as Sgamma1, might provide a sufficient sink for AID protein to titrate away AID from other accessible sites within or outside the Ig locus.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Deleção de Genes , Marcação de Genes , Switching de Imunoglobulina/genética , Imunoglobulina E/metabolismo , Região de Troca de Imunoglobulinas/genética , Animais , Células Cultivadas , Marcação de Genes/métodos , Humanos , Imunoglobulina E/genética , Isotipos de Imunoglobulinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Recombinação Genética/imunologia , Hipermutação Somática de Imunoglobulina
20.
Adv Immunol ; 101: 163-89, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19231595

RESUMO

As part of the adaptive immune response, B cells alter their functional immunoglobulin (Ig) receptor genes through somatic hypermutation (SHM) and/or class switch recombination (CSR) via processes that are initiated by activation induced cytidine deaminase (AID). These genetic modifications are targeted at specific sequences known as Variable (V) and Switch (S) regions. Here, we analyze and review the properties and function of AID target sequences across species and compare them with non-Ig sequences, including known translocation hotspots. We describe properties of the S sequences, and discuss species and isotypic differences among S regions. Common properties of SHM and CSR target sequences suggest that evolution of S regions might involve the duplication and selection of SHM hotspots.


Assuntos
Linfócitos B/imunologia , Citidina Desaminase/imunologia , Genes de Imunoglobulinas/imunologia , Switching de Imunoglobulina/imunologia , Imunoglobulinas/imunologia , Hipermutação Somática de Imunoglobulina/imunologia , Animais , Linfócitos B/metabolismo , Evolução Biológica , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Genes de Imunoglobulinas/genética , Humanos , Switching de Imunoglobulina/genética , Imunoglobulinas/genética , Hipermutação Somática de Imunoglobulina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA