Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(18): 3475-3494, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38687691

RESUMO

The formation of silicate grains in the interstellar medium (ISM), especially those containing chiral surfaces such as clinopyroxenes, is poorly understood. Moreover, silicate interactions with various forms of hydrogen-proton (H+), neutral H (HI), and molecular hydrogen (H2) are of high importance as hydrogen comprises >90% of the ISM gas budget, and these species play important roles in the formation of new molecules in space. Furthermore, silicate surfaces catalyze the formation of H2 in the interstellar medium formed on dust grain surfaces by H-H association. The technical difficulty of in situ laboratory investigations of nanosilicate nucleation using astrophysically relevant environmental conditions makes computational chemistry a useful tool for studying potential nanosilicate structures. Furthermore, chiral surfaces interacting with chiral organic molecules could serve as templates that lead to the enantiomeric excess of l-amino acids and d-polyols detected in carbonaceous meteorites. However, in order for this effect to take place, an excess of one chiral form of a mineral is required to break the symmetry. This symmetry-breaking event could have been due to the asymmetric absorption of circularly polarized light by the nanosilicate as it traverses star-forming regions. We investigate this possibility using a metastable chiral form of an enstatite dimer as an input for density functional theory (DFT) and time-dependent (TD)-DFT calculations to obtain various properties and circular dichroism spectra. All in all, twenty-six magnesium nanosilicate structures were studied using varying degrees of hydrogenation: none, with HI, with H+, and with H2. The HSE06/aug-cc-pVQZ level of theory was used for the DFT calculations. TD-DFT calculations utilized the CAM-B3LYP/cc-pVQZ and ωB97X-D3/cc-pVQZ functional and basic set pairings. Results show that (1) all twenty-six structures have absorption bands that fall within the 0.6-28.3 µm range available with the newly launched James Webb Space Telescope and (2) there is a small enantioselective effect by UV-CPL on the eight chiral enstatite dimers (predicted g-values of up to 0.007). While the observed effect is small, it opens up the possibility that it is the inorganic material that becomes enantiomerically biased by UV-CPL, driving chiral enhancements in meteoric organic molecules.

2.
Faraday Discuss ; 245(0): 541-568, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37306320

RESUMO

Complex, nitrogen-bearing interstellar molecules, especially amines, are targets of particular interest for detection in star- and planet-forming regions, due to their possible relevance to prebiotic chemistry. However, these NH2-bearing molecules are not universally detected in sources where other, oxygen-bearing complex organic molecules (COMs) are often plentiful. Nevertheless, recent astrochemical models have often predicted large abundances for NH2-bearing complex organics, based on their putative production on dust grains. Here we investigate a range of new gas-phase proton-transfer reactions and their influence on the destruction of COMs. As in past studies, reactions between protonated COMs and ammonia (NH3) are found to be important in prolonging gas-phase COM lifetimes. However, for molecules with proton affinities (PA) greater than that of ammonia, proton-transfer reactions result in drastic reductions in abundances and lifetimes. Ammonia acts as a sink for proton transfer from low-PA COMs, while passing on protons to high-PA species; dissociative recombination with electrons then destroys the resulting ions. Species strongly affected include methylamine (CH3NH2), urea (NH2C(O)NH2) and others bearing the NH2 group. The abundances of these species show a sharp time dependence, indicating that their detectability may rest on the precise chemical age of the source. Rapid gas-phase destruction of glycine (NH2CH2COOH) in the models suggests that its future detection may be yet more challenging than previously hoped.

3.
Chem Soc Rev ; 48(8): 2293-2314, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30815642

RESUMO

In 2016, unambiguous evidence for the presence of the amino acid glycine, an important prebiotic molecule, was deduced based on in situ mass-spectral studies of the coma surrounding cometary ice. This finding is significant because comets are thought to have preserved the icy grains originally found in the interstellar medium prior to solar system formation. Energetic processing of cosmic ices via photochemistry and radiation chemistry is thought to be the dominant mechanism for the extraterrestrial synthesis of prebiotic molecules. Radiation chemistry is defined as the "study of the chemical changes produced by the absorption of radiation of sufficiently high energy to produce ionization." Ionizing radiation in cosmic chemistry includes high-energy particles (e.g., cosmic rays) and high-energy photons (e.g., extreme-UV). In contrast, photochemistry is defined as chemical processes initiated by photon-induced electronic excitation not involving ionization. Vacuum-UV (6.2-12.4 eV) light may, in addition to photochemistry, initiate radiation chemistry because the threshold for producing secondary electrons is lower in the condensed phase than in the gas phase. Unique to radiation chemistry are four phenomena: (1) production of a cascade of low-energy (<20 eV) secondary electrons which are thought to be the dominant driving force for radiation chemistry, (2) reactions initiated by cations, (3) non-uniform distribution of reaction intermediates, and (4) non-selective chemistry leading to the production of multiple reaction products. The production of low-energy secondary electrons during radiation chemistry may also lead to new reaction pathways not available to photochemistry. In addition, low-energy electron-induced radiation chemistry may predominate over photochemistry because of the sheer number of low-energy secondary electrons. Moreover, reaction cross-sections can be several orders of magnitude larger for electrons than for photons. Discerning the role of photochemistry vs. radiation chemistry in astrochemistry is challenging because astrophysical photon-induced chemistry studies have almost exclusively used light sources that produce >10 eV photons. Because a primary objective of chemistry is to provide molecular-level mechanistic explanations for macroscopic phenomena, our ultimate goal in this review paper is to critically evaluate our current understanding of cosmic ice energetic processing which likely leads to the synthesis of extraterrestrial prebiotic molecules.


Assuntos
Meio Ambiente Extraterreno/química , Gelo , Processos Fotoquímicos , Radioquímica , Elétrons
8.
Phys Chem Chem Phys ; 20(8): 5553-5568, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29387847

RESUMO

Dust grains in cold, dense interstellar clouds build up appreciable ice mantles through the accretion and subsequent surface chemistry of atoms and molecules from the gas. These mantles, of thicknesses on the order of 100 monolayers, are primarily composed of H2O, CO, and CO2. Laboratory experiments using interstellar ice analogues have shown that porosity could be present and can facilitate diffusion of molecules along the inner pore surfaces. However, the movement of molecules within and upon the ice is poorly described by current chemical kinetics models, making it difficult either to reproduce the formation of experimental porous ice structures or to extrapolate generalized laboratory results to interstellar conditions. Here we use the off-lattice Monte Carlo kinetics model MIMICK to investigate the effects that various deposition parameters have on laboratory ice structures. The model treats molecules as isotropic spheres of a uniform size, using a Lennard-Jones potential. We reproduce experimental trends in the density of amorphous solid water (ASW) for varied deposition angle, rate and surface temperature; ice density decreases when the incident angle or deposition rate is increased, while increasing temperature results in a more-compact water ice. The models indicate that the density behaviour at higher temperatures (≥80 K) is dependent on molecular rearrangement resulting from thermal diffusion. To reproduce trends at lower temperatures, it is necessary to take account of non-thermal diffusion by newly-adsorbed molecules, which bring kinetic energy both from the gas phase and from their acceleration into a surface binding site. Extrapolation of the model to conditions appropriate to protoplanetary disks, in which direct accretion of water from the gas-phase may be the dominant ice formation mechanism, indicate that these ices may be less porous than laboratory ices.

9.
Chem Rev ; 113(12): 8939-60, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24024866
10.
Astrophys J ; 884(1)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31806913

RESUMO

The first computational model of solid-phase chemistry in cometary nuclear ices is presented. An astrochemical kinetics model, MAGICKAL, is adapted to trace the chemical evolution in multiple layers of cometary ice, over a representative period of 5 Gyr. Physical conditions are chosen appropriate for "cold storage" of the cometary nucleus in the outer Solar System, prior to any active phase. The chemistry is simulated at a selection of static temperatures in the range 5 - 60 K, while the ice is exposed to the interstellar radiation field, inducing a photo-chemistry in the outer ice layers that produces significant formation of complex organic molecules. A treatment for the chemistry resulting from cosmic-ray bombardment of the ices is also introduced into the model, along with a new formulation for low-temperature photo-chemistry. Production of simple and complex molecules to depth on the order of 10 m or more is achieved, with local fractional abundances comparable to observed values in many cases. The production of substantial amounts of O2 (and H2O2) is found, suggesting that long-term processing by high-energy cosmic rays of cometary ices in situ, over a period on the order of 1 Gyr, may be sufficient to explain the large observed abundances of O2, if the overall loss of material from the comet is limited to a depth on the order of 10 m. Entry into the inner solar system could produce a further enhancement in the molecular content of the nuclear ices that may be quantifiable using this modeling approach.

11.
Science ; 345(6204): 1584-7, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25258074

RESUMO

The largest noncyclic molecules detected in the interstellar medium (ISM) are organic with a straight-chain carbon backbone. We report an interstellar detection of a branched alkyl molecule, iso-propyl cyanide (i-C3H7CN), with an abundance 0.4 times that of its straight-chain structural isomer. This detection suggests that branched carbon-chain molecules may be generally abundant in the ISM. Our astrochemical model indicates that both isomers are produced within or upon dust grain ice mantles through the addition of molecular radicals, albeit via differing reaction pathways. The production of iso-propyl cyanide appears to require the addition of a functional group to a nonterminal carbon in the chain. Its detection therefore bodes well for the presence in the ISM of amino acids, for which such side-chain structure is a key characteristic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA