RESUMO
The transcription factor Nrf2 regulates the expression of genes required for protection from xenobiotic and oxidative stress. Under normal conditions Nrf2 is constantly degraded upon ubiquitination, mediated by the Nrf2 inhibitor Keap1. Inflammasomes represent stress-induced protein complexes. They are critically involved in acute and chronic inflammation through caspase-1-mediated activation of pro-inflammatory cytokines. Here, we demonstrate that Nrf2 is a positive regulator of the NLRP3 inflammasome. In contrast, Nrf2-activating compounds, including the anti-inflammatory drug dimethyl fumarate (DMF), inhibit inflammasome activation. Both effects are independent of the transcriptional activity of Nrf2 and, at least in part, not interdependent. On the other hand, NLRP3 inflammasome activation induces a rapid and partly caspase-1- and Keap1-independent degradation of Nrf2. These data argue against a simultaneous activation of both stress-related pathways. Finally, we provide evidence that the cross-regulation of both pathways is controlled by a physical interaction between the Nrf2/Keap1 and NLRP3 complexes.
Assuntos
Inflamassomos/imunologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Caspase 1/metabolismo , Citocinas/imunologia , Fumarato de Dimetilo/farmacologia , Regulação da Expressão Gênica , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Inflamação , Queratinócitos , Camundongos , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
The Nrf2 (nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2) transcription factor is a key player in cytoprotection and activated in stress conditions caused by reactive oxygen species (ROS) or electrophiles. Inflammasomes represent central regulators of inflammation. Upon detection of various stress factors, assembly of the inflamasome protein complex results in activation and secretion of proinflammatory cytokines. In addition, inflammasome activation causes pyroptosis, a lytic form of cell death, which supports inflammation. There is growing evidence of a crosstalk between the Nrf2 and inflammasome pathways at different levels. For example, Nrf2 activating compounds inhibit inflammasomes and consequently inflammation. This review summarizes what is known about the complex and predominantly antagonistic relationship of both stress-activated pathways.
Assuntos
Inflamassomos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Humanos , Inflamassomos/genética , Fator 2 Relacionado a NF-E2/genética , Transdução de SinaisRESUMO
Inflammasomes comprise a group of protein complexes, which activate the protease caspase-1 upon sensing a variety of stress factors. Active caspase-1 in turn cleaves and thereby activates the pro-inflammatory cytokines prointerleukin (IL)-1ß and -18, and induces unconventional protein secretion (UPS) of mature IL-1ß, IL-18, as well as of many other proteins involved in and required for induction of inflammation. Human primary keratinocytes (HPKs) represent epithelial cells able to activate caspase-1 in an inflammasome-dependent manner upon irradiation with a physiological dose of ultraviolet B (UVB) light. Here, we describe the isolation of keratinocytes from human skin, their cultivation, and induction of caspase-1-dependent UPS upon UVB irradiation as well as its siRNA- and chemical-mediated inhibition. In contrast to inflammasome activation of professional immune cells, UVB-irradiated HPKs represent a robust and physiological cell culture system for the analysis of UPS induced by active caspase-1.
Assuntos
Caspase 1/metabolismo , Queratinócitos/metabolismo , Proteínas/metabolismo , Via Secretória , Separação Celular , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Inflamassomos/metabolismo , Interleucina-1/metabolismo , RNA Interferente Pequeno/genética , TransfecçãoRESUMO
Caspase-1 has a crucial role in innate immunity as the protease activates the proinflammatory cytokine prointerleukin(IL)-1ß. Furthermore, caspase-1 induces pyroptosis, a lytic form of cell death that supports inflammation. Activation of caspase-1 occurs in multi-protein complexes termed inflammasomes, which assemble upon sensing of stress signals. In the skin and in skin-derived keratinocytes, UVB irradiation induces inflammasome-dependent IL-1 secretion and sunburn. Here we present evidence that caspase-1 and caspase-4 are required for UVB-induced apoptosis. In UVB-irradiated human primary keratinocytes, apoptosis occurs significantly later than inflammasome activation but depends on caspase-1 activity. However, it proceeds independently of inflammasome activation. By a proteomics approach, we identified the antiapoptotic Bap31 as a putative caspase-1 substrate. Caspase-1-dependent apoptosis is possibly a recent process in evolution as it was not detected in mice. These results suggest a protective role of caspase-1 in keratinocytes during UVB-induced skin cancer development through the induction of apoptosis.
Assuntos
Apoptose/efeitos da radiação , Caspase 1/metabolismo , Queratinócitos/patologia , Raios Ultravioleta/efeitos adversos , Animais , Caspase 1/efeitos dos fármacos , Caspase 1/genética , Caspases Iniciadoras/metabolismo , Células Cultivadas , Feminino , Humanos , Inflamassomos/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , RNA Interferente Pequeno/farmacologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/prevenção & controleRESUMO
Caspase-1 plays a fundamental role in innate immunity and in several important inflammatory diseases as the protease activates the pro-inflammatory cytokines proIL-1ß and proIL-18. Caspase-1 itself is activated in different inflammasome complexes, which assemble in response to a variety of exogenous and endogenous stressors. More recently, pyroptosis, a caspase-1-dependent type of programmed cell death, has been identified that is able to support secreted IL-1 and IL-18 in triggering an inflammatory response. Whereas these 'canonical' activities are well appreciated, this review also highlights less-known pathways and molecules activated by caspase-1. There is evidence that caspase-1 supports cell survival by activation of NF-κB, induction of membrane repair and regulation of unconventional secretion of certain proteins. The physiologic effects of processing of other downstream targets, such as proteins involved in glycolysis or activation of caspase-7, are less well understood. However, there is increasing evidence that caspase-1 contributes to innate and adaptive immunologic defense mechanisms, repair and pathologic conditions by the regulation of several different and partially opposing pathways.