Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 165(1): 201-217, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37028770

RESUMO

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is characterized by steatosis, lobular inflammation, hepatocyte ballooning degeneration, and fibrosis, all of which increase the risk of progression to end-stage liver disease. Osteopontin (OPN, SPP1) plays an important role in macrophage (MF) biology, but whether MF-derived OPN affects NASH progression is unknown. METHODS: We analyzed publicly available transcriptomic datasets from patients with NASH, and used mice with conditional overexpression or ablation of Spp1 in myeloid cells and liver MFs, and fed them a high-fat, fructose, and cholesterol diet mimicking the Western diet, to induce NASH. RESULTS: This study demonstrated that MFs with high expression of SPP1 are enriched in patients and mice with nonalcoholic fatty liver disease (NAFLD), and show metabolic but not pro-inflammatory properties. Conditional knockin of Spp1 in myeloid cells (Spp1KI Mye) or in hepatic macrophages (Spp1KI LvMF) conferred protection, whereas conditional knockout of Spp1 in myeloid cells (Spp1ΔMye) worsened NASH. The protective effect was mediated by induction of arginase-2 (ARG2), which enhanced fatty acid oxidation (FAO) in hepatocytes. Induction of ARG2 stemmed from enhanced production of oncostatin-M (OSM) in MFs from Spp1KI Mye mice. OSM activated STAT3 signaling, which upregulated ARG2. In addition to hepatic effects, Spp1KI Mye also protected through sex-specific extrahepatic mechanisms. CONCLUSION: MF-derived OPN protects from NASH, by upregulating OSM, which increases ARG2 through STAT3 signaling. Further, the ARG2-mediated increase in FAO reduces steatosis. Therefore, enhancing the OPN-OSM-ARG2 crosstalk between MFs and hepatocytes may be beneficial for patients with NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Osteopontina , Animais , Feminino , Masculino , Camundongos , Dieta Hiperlipídica , Dieta Ocidental , Modelos Animais de Doenças , Fígado/patologia , Cirrose Hepática/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Osteopontina/genética , Osteopontina/metabolismo
2.
Hepatol Commun ; 6(1): 133-160, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558855

RESUMO

Alcohol-associated liver disease (ALD) is a significant clinical problem for which the most effective therapy is alcohol abstinence. The two aims of this study were, first, to identify the liver transcriptome, fecal microbiome, and portal serum metabolome at peak injury and during early and late resolution from ALD; and second, to integrate their interactions and understand better the pathogenesis of ALD. To provoke alcohol-induced liver injury, female and male wild-type mice were fed the control or ethanol Lieber-DeCarli diets for 6 weeks. To study early and late resolution, alcohol was withdrawn from the diet and mice were sacrificed after 3 and 14 days, respectively. At peak injury, there was increased signal transducer and activator of transcription (Stat3), Rho-GTPases, Tec kinase and glycoprotein VI (Gp6), and decreased peroxisome proliferator-activated receptor signaling. During resolution from ALD, there was up-regulation of vitamin D receptor/retinoid X receptor, toll-like receptor, p38 and Stat3, and down-regulation of liver X receptor signaling. Females showed significant changes in catabolic pathways, whereas males increased cellular stress, injury, and immune-response pathways that decreased during resolution. The bacterial genus Alistipes and the metabolite dipeptide glycyl-L-leucine increased at peak but decreased during resolution from ALD in both genders. Hepatic induction of mitogen-activated protein kinase (Map3k1) correlated with changes in the microbiome and metabolome at peak but was restored during ALD resolution. Inhibition of MAP3K1 protected from ALD in mice. Conclusion: Alcohol abstinence restores the liver transcriptome, fecal microbiome, and portal serum metabolome in a gender-specific manner. Integration of multiomics data identified Map3k1 as a key gene driving pathogenesis and resolution from ALD.


Assuntos
Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Metaboloma , Microbiota , Transcriptoma , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Fezes/microbiologia , Feminino , Hepatócitos/metabolismo , Hepatopatias Alcoólicas/microbiologia , MAP Quinase Quinase Quinase 1/antagonistas & inibidores , Masculino , Camundongos Endogâmicos C57BL , Regulação para Cima
3.
Hepatol Commun ; 4(1): 92-108, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31909358

RESUMO

Nonalcoholic steatohepatitis (NASH) is a metabolic disorder in which poor nutrition and the gut-to-liver interaction play a major role. We previously established that hepatic high mobility group box-1 (HMGB1) is involved in chronic liver disease. HMGB1 increases in patients with NASH and it is expressed in intestinal epithelial cells (IEC); yet, the role of intestinal HMGB1 in the pathogenesis of NASH has not been investigated. Thus, we hypothesized that IEC-derived HMGB1 could play a role in NASH due to local effects in the intestine that govern hepatic steatosis. Control littermates and Hmgb1 ΔIEC mice were fed for 1 or 24 weeks a control diet or a high fat, high cholesterol (CHO) and fructose-enriched diet (HFCFD). Hepatic and intestinal injury were analyzed. Hmgb1 ΔIEC mice were protected from HFCFD-induced NASH after 1 or 24 weeks of feeding; however, they showed extensive atypical lipid droplet accumulation and increased concentrations of triglycerides (TG) and CHO in jejunal IEC together with lower TG and other lipid classes in serum. Olive oil or CHO gavage resulted in decreased serum TG and CHO in Hmgb1 ΔIEC mice, respectively, indicating delayed and/or reduced chylomicron (CM) efflux. There was significant up-regulation of scavenger receptor class B type 1 (SR-B1) and down-regulation of apolipoprotein B48 (ApoB48) proteins, suggesting decreased lipid packaging and/or CM formation that resulted in lesser hepatosteatosis. Conclusion: Ablation of Hmgb1 in IEC causes up-regulation of SR-B1 and down-regulation of ApoB48, leads to lipid accumulation in jejunal IEC, decreases CM packaging and/or release, reduces serum TG, and lessens liver steatosis, therefore protecting Hmgb1 ΔIEC mice from HFCFD-induced NASH.

4.
Hepatol Commun ; 2(9): 1005-1020, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30202816

RESUMO

High-mobility group box-1 (HMGB1) is a ubiquitous protein. While initially thought to be simply an architectural protein due to its DNA-binding ability, evidence from the last decade suggests that HMGB1 is a key protein participating in the pathogenesis of acute liver injury and chronic liver disease. When it is passively released or actively secreted after injury, HMGB1 acts as a damage-associated molecular pattern that communicates injury and inflammation to neighboring cells by the receptor for advanced glycation end products or toll-like receptor 4, among others. In the setting of acute liver injury, HMGB1 participates in ischemia/reperfusion, sepsis, and drug-induced liver injury. In the context of chronic liver disease, it has been implicated in alcoholic liver disease, liver fibrosis, nonalcoholic steatohepatitis, and hepatocellular carcinoma. Recently, specific posttranslational modifications have been identified that could condition the effects of the protein in the liver. Here, we provide a detailed review of how HMGB1 signaling participates in acute liver injury and chronic liver disease.

5.
Hepatol Commun ; 2(1): 84-98, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29404515

RESUMO

The aim of this study was to investigate the role of osteopontin (OPN) in hematopoietic stem cell (HPSC) mobilization to the liver and its contribution to alcoholic liver disease (ALD). We analyzed young (14-16 weeks) and old (>1.5 years) wild-type (WT) littermates and global Opn knockout (Opn-/- ) mice for HPSC mobilization to the liver. In addition, WT and Opn-/- mice were chronically fed the Lieber-DeCarli diet for 7 weeks. Bone marrow (BM), blood, spleen, and liver were analyzed by flow cytometry for HPSC progenitors and polymorphonuclear neutrophils (PMNs). Chemokines, growth factors, and cytokines were measured in serum and liver. Prussian blue staining for iron deposits and naphthol AS-D chloroacetate esterase staining for PMNs were performed on liver sections. Hematopoietic progenitors were lower in liver and BM of young compared to old Opn-/- mice. Granulocyte colony-stimulating factor and macrophage colony-stimulating factor were increased in Opn-/- mice, suggesting potential migration of HPSCs from the BM to the liver. Furthermore, ethanol-fed Opn-/- mice showed significant hepatic PMN infiltration and hemosiderin compared to WT mice. As a result, ethanol feeding caused greater liver injury in Opn-/- compared to WT mice. Conclusion: Opn deletion promotes HPSC mobilization, PMN infiltration, and iron deposits in the liver and thereby enhances the severity of ALD. The age-associated contribution of OPN to HPSC mobilization to the liver, the prevalence of PMNs, and accumulation of hepatic iron, which potentiates oxidant stress, reveal novel signaling mechanisms that could be targeted for therapeutic benefit in patients with ALD. (Hepatology Communications 2018;2:84-98).

6.
Toxicol Res (Camb) ; 5(4): 1053-1065, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27746894

RESUMO

More predictive in vitro liver models are a critical requirement for preclinical screening of compounds demonstrating hepatotoxic liability. 3D liver spheroids have been shown to have an enhanced functional lifespan compared to 2D monocultures; however a detailed characterisation of spatiotemporal function and structure of spheroids still needs further attention before widespread use in industry. We have developed and characterized the structure and function of a 3D liver spheroid model formed from C3A hepatoma cells. Spheroids were viable and maintained a compact in vivo-like structure with zonation features for up to 32 days. MRP2 and Pgp transporters had polarised expression on the canalicular membrane of cells in the spheroids and were able to functionally transport CMFDA substrate into these canalicular structures. Spheroids expressed CYP2E1 and were able to synthesise and secrete albumin and urea to a higher degree than monolayer C3A cultures. Penetration of doxorubicin throughout the spheroid core was demonstrated. Spheroids showed increased susceptibility to hepatotoxins when compared to 2D cultures, with acetaminophen having an IC50 of 7.2 mM in spheroids compared to 33.8 mM in monolayer culture. To conclude, we developed an alternative method for creating C3A liver spheroids and demonstrated cellular polarisation and zonation, as well as superior liver-specific functionality and more sensitive toxicological response compared to standard 2D liver models, confirming a more in vivo-like liver model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA