Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Neurosci ; 37(16): 4359-4369, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28320841

RESUMO

Identifying novel treatments that facilitate extinction learning could enhance cue-exposure therapy and reduce high relapse rates in alcoholics. Activation of mGlu5 receptors in the infralimbic prefrontal cortex (IL-PFC) facilitates learning during extinction of cue-conditioned alcohol-seeking behavior. Small-conductance calcium-activated potassium (KCa2) channels have also been implicated in extinction learning of fear memories, and mGlu5 receptor activation can reduce KCa2 channel function. Using a combination of electrophysiological, pharmacological, and behavioral approaches, this study examined KCa2 channels as a novel target to facilitate extinction of alcohol-seeking behavior in rats. This study also explored related neuronal and synaptic mechanisms within the IL-PFC that underlie mGlu5-dependent enhancement of extinction learning. Using whole-cell patch-clamp electrophysiology, activation of mGlu5 in ex vivo slices significantly reduced KCa2 channel currents in layer V IL-PFC pyramidal neurons, confirming functional downregulation of KCa2 channel activity by mGlu5 receptors. Additionally, positive modulation of KCa2 channels prevented mGlu5 receptor-dependent facilitation of long-term potentiation in the IL-PFC. Systemic and intra-IL-PFC treatment with apamin (KCa2 channel allosteric inhibitor) significantly enhanced extinction of alcohol-seeking behavior across multiple extinction sessions, an effect that persisted for 3 weeks, but was not observed after apamin microinfusions into the prelimbic PFC. Positive modulation of IL-PFC KCa2 channels significantly attenuated mGlu5-dependent facilitation of alcohol cue-conditioned extinction learning. These data suggest that mGlu5-dependent facilitation of extinction learning and synaptic plasticity in the IL-PFC involves functional inhibition of KCa2 channels. Moreover, these findings demonstrate that KCa2 channels are a novel target to facilitate long-lasting extinction of alcohol-seeking behavior.SIGNIFICANCE STATEMENT Alcohol use disorder is a chronic relapsing disorder that is associated with compulsive alcohol-seeking behavior. One of the main causes of alcohol relapse is the craving caused by environmental cues that are associated with alcohol. These cues are formed by normal learning and memory principles, and the understanding of the brain mechanisms that help form these associations can lead to the development of drugs and/or behavior therapies that reduce the impact that these cues have on relapse in alcoholics.


Assuntos
Alcoolismo/fisiopatologia , Comportamento de Procura de Droga , Extinção Psicológica , Potenciação de Longa Duração , Córtex Pré-Frontal/fisiologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Alcoolismo/metabolismo , Animais , Masculino , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Ratos , Ratos Wistar
2.
Addict Biol ; 21(3): 560-74, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25787124

RESUMO

Alcohol use disorder is a chronic relapsing brain disease characterized by the loss of ability to control alcohol (ethanol) intake despite knowledge of detrimental health or personal consequences. Clinical and pre-clinical models provide strong evidence for chronic ethanol-associated alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc). However, the neural mechanisms that contribute to aberrant glutamatergic signaling in ethanol-dependent individuals in this critical brain structure remain unknown. Using an unbiased proteomic approach, we investigated the effects of chronic intermittent ethanol (CIE) exposure on neuroadaptations in postsynaptic density (PSD)-enriched proteins in the NAc of ethanol-dependent mice. Compared with controls, CIE exposure significantly changed expression levels of 50 proteins in the PSD-enriched fraction. Systems biology and functional annotation analyses demonstrated that the dysregulated proteins are expressed at tetrapartite synapses and critically regulate cellular morphology. To confirm this latter finding, the density and morphology of dendritic spines were examined in the NAc core of ethanol-dependent mice. We found that CIE exposure and withdrawal differentially altered dendrite diameter and dendritic spine density and morphology. Through the use of quantitative proteomics and functional annotation, these series of experiments demonstrate that ethanol dependence produces neuroadaptations in proteins that modify dendritic spine morphology. In addition, these studies identified novel PSD-related proteins that contribute to the neurobiological mechanisms of ethanol dependence that drive maladaptive structural plasticity of NAc neurons.


Assuntos
Alcoolismo/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Etanol/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Densidade Pós-Sináptica/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Animais , Western Blotting , Depressores do Sistema Nervoso Central/administração & dosagem , Cromatografia Líquida , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Etanol/administração & dosagem , Masculino , Camundongos , Núcleo Accumbens/metabolismo , Densidade Pós-Sináptica/metabolismo , Proteoma/metabolismo , Síndrome de Abstinência a Substâncias/etiologia , Síndrome de Abstinência a Substâncias/metabolismo , Espectrometria de Massas em Tandem
3.
Addict Biol ; 21(6): 1097-1112, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26104325

RESUMO

Alcohol use disorders (AUDs) are a major public health issue and produce enormous societal and economic burdens. Current Food and Drug Administration (FDA)-approved pharmacotherapies for treating AUDs suffer from deleterious side effects and are only effective in a subset of individuals. It is therefore essential to find improved medications for the management of AUDs. Emerging evidence suggests that anticonvulsants are a promising class of drugs for treating individuals with AUDs. In these studies, we used integrative functional genomics to demonstrate that genes that encode Kv7 channels (i.e. Kcnq2/3) are related to alcohol (ethanol) consumption, preference and acceptance in rodents. We then tested the ability of the FDA-approved anticonvulsant retigabine, a Kv7 channel opener, to reduce voluntary ethanol consumption of Wistar rats in a two-bottle choice intermittent alcohol access paradigm. Systemic administration and microinjections of retigabine into the nucleus accumbens significantly reduced alcohol drinking, and retigabine was more effective at reducing intake in high- versus low-drinking populations of Wistar rats. Prolonged voluntary drinking increased the sensitivity to the proconvulsant effects of pharmacological blockade of Kv7 channels and altered surface trafficking and SUMOylation patterns of Kv7.2 channels in the nucleus accumbens. These data implicate Kcnq2/3 in the regulation of ethanol drinking and demonstrate that long-term drinking produces neuroadaptations in Kv7 channels. In addition, these results have identified retigabine as a potential pharmacotherapy for treating AUDs and Kv7 channels as a novel therapeutic target for reducing heavy drinking.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ3/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Dissuasores de Álcool/farmacologia , Convulsões por Abstinência de Álcool/induzido quimicamente , Animais , Antracenos/farmacologia , Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Carbamatos/farmacologia , Condicionamento Operante/efeitos dos fármacos , Genômica , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Masculino , Moduladores de Transporte de Membrana/farmacologia , Microinjeções , Atividade Motora/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos Wistar , Sumoilação/efeitos dos fármacos , Percepção Gustatória/efeitos dos fármacos
4.
J Neurosci ; 34(22): 7562-74, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24872560

RESUMO

Addiction is a chronic relapsing disorder in which relapse is often initiated by exposure to drug-related cues. The present study examined the effects of mGluR5 activation on extinction of ethanol-cue-maintained responding, relapse-like behavior, and neuronal plasticity. Rats were trained to self-administer ethanol and then exposed to extinction training during which they were administered either vehicle or the mGluR5 positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) or CDPPB. CDPPB treatment reduced active lever responding during extinction, decreased the total number of extinction sessions required to meet criteria, and attenuated cue-induced reinstatement of ethanol seeking. CDPPB facilitation of extinction was blocked by the local infusion of the mGluR5 antagonist 3-((2-methyl-4-thiazolyl)ethynyl) pyridine into the infralimbic (IfL) cortex, but had no effect when infused into the prelimbic (PrL) cortex. Analysis of dendritic spines revealed alterations in structural plasticity, whereas electrophysiological recordings demonstrated differential alterations in glutamatergic neurotransmission in the PrL and IfL cortex. Extinction was associated with increased amplitude of evoked synaptic PrL and IfL NMDA currents but reduced amplitude of PrL AMPA currents. Treatment with CDPPB prevented the extinction-induced enhancement of NMDA currents in PrL without affecting NMDA currents in the IfL. Whereas CDPPB treatment did not alter the amplitude of PrL or IfL AMPA currents, it did promote the expression of IfL calcium-permeable GluR2-lacking receptors in both abstinence- and extinction-trained rats, but had no effect in ethanol-naive rats. These results confirm changes in the PrL and IfL cortex in glutamatergic neurotransmission during extinction learning and demonstrate that manipulation of mGluR5 facilitates extinction of ethanol cues in association with neuronal plasticity.


Assuntos
Comportamento Aditivo/prevenção & controle , Etanol/administração & dosagem , Extinção Psicológica/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Comportamento Aditivo/patologia , Comportamento Aditivo/psicologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Extinção Psicológica/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar , Autoadministração
5.
J Neurosci ; 34(10): 3706-18, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24599469

RESUMO

Dopamine (DA) receptors in the medial prefrontal cortex (mPFC) exert powerful effects on cognition by modulating the balance between excitatory and inhibitory neurotransmission. The present study examined the impact of chronic intermittent ethanol (CIE) exposure on cognitive function and DA receptor-mediated neurotransmission in the rat mPFC. Consistent with alterations in executive function in alcoholics, CIE-exposed rats exhibited deficits in behavioral flexibility in an operant set-shifting task. Since alterations in dopaminergic neurotransmission in the mPFC have been implicated in a number of behavioral disorders including addiction, studies were then performed in the adult acute slice preparation to examine changes in DA receptor function in the mPFC following CIE exposure. In slices obtained from control rats, DA receptor stimulation was observed to exert complex actions on neuronal firing and synaptic neurotransmission that were not only dependent upon the particular receptor subtype but also whether it was a pyramidal cell or a fast-spiking interneuron. In contrast to slices from control rats, there was a near complete loss of the modulatory actions of D2/D4 receptors on cell firing and neurotransmission in slices obtained immediately, 1 and 4 weeks after the last day of CIE exposure. This loss did not appear to be associated with changes in receptor expression. In contrast, CIE exposure did not alter D1 receptor function or mGluR1 modulation of firing. These studies are consistent with the suggestion that chronic alcohol exposure disrupts cognitive function at least in part through disruption of D2 and D4 receptor signaling in mPFC.


Assuntos
Cognição/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Etanol/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D4/agonistas , Animais , Cognição/fisiologia , Condicionamento Operante/fisiologia , Masculino , Estimulação Luminosa/métodos , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Distribuição Aleatória , Ratos , Ratos Long-Evans , Receptores de Dopamina D2/fisiologia , Receptores de Dopamina D4/fisiologia
6.
Pharmacol Biochem Behav ; 239: 173752, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521210

RESUMO

RATIONALE: Antipsychotic medications that are used to treat psychosis are often limited in their efficacy by high rates of severe side effects. Treatment success in schizophrenia is further complicated by high rates of comorbid nicotine use. Dopamine D2 heteroreceptor complexes have recently emerged as targets for the development of more efficacious pharmaceutical treatments for schizophrenia. OBJECTIVE: The current study sought to explore the use of the positive allosteric modulator of the mGlu5 receptor 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) as a treatment to reduce symptoms related to psychosis and comorbid nicotine use. METHODS: Neonatal treatment of animals with the dopamine D2-like receptor agonist quinpirole (NQ) from postnatal day (P)1-21 produces a lifelong increase in D2 receptor sensitivity, showing relevance to psychosis and comorbid tobacco use disorder. Following an 8-day conditioning paradigm, brain tissue in the mesolimbic pathway was analyzed for several plasticity markers, including brain derived neurotrophic factor (BDNF), phosphorylated p70 ribosomal S6 kinase (phospho-p70S6K), and cadherin-13 (Cdh13). RESULTS: Pretreatment with CDPPB was effective to block enhanced nicotine conditioned place preference observed in NQ-treated animals. Pretreatment was additionally effective to block the nicotine-induced increase in BDNF and sex-dependent increases in cadherin-13 in the ventral tegmental area (VTA), as well as increased phospho-p70S6K in the nucleus accumbens (NAcc) shell found in NQ-treated animals. CONCLUSION: In conjunction with prior work, the current study suggests positive allosteric modulation of the mGlu5 receptor, an emerging target for schizophrenia therapeutics, may be effective for the treatment of comorbid nicotine abuse in psychosis.


Assuntos
Benzamidas , Nicotina , Receptor de Glutamato Metabotrópico 5 , Recompensa , Animais , Nicotina/farmacologia , Masculino , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Receptor de Glutamato Metabotrópico 5/metabolismo , Ratos , Plasticidade Neuronal/efeitos dos fármacos , Fumar Cigarros , Feminino , Quimpirol/farmacologia , Pirazóis/farmacologia , Ratos Sprague-Dawley , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sistema Límbico/metabolismo , Sistema Límbico/efeitos dos fármacos , Animais Recém-Nascidos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos
7.
Front Pharmacol ; 13: 837657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211024

RESUMO

The present study used auditory fear conditioning to assess the impact of repeated binge-like episodes of alcohol exposure during adolescence on conditioned fear in adulthood. Male and female Long-Evans rats were subjected to adolescent intermittent ethanol (AIE) exposure by vapor inhalation between post-natal day 28 and 44. After aging into adulthood, rats then underwent fear conditioning by exposure to a series of tone-shock pairings. This was followed by cued-tone extinction training, and then testing of fear recovery. In male rats, AIE exposure enhanced conditioned freezing but did not alter the time-course of extinction of cued-tone freezing. During subsequent assessment of fear recovery, AIE exposed rats exhibited less freezing during contextual fear renewal, but greater freezing during extinction recall and spontaneous recovery. Compared to males, female rats exhibited significantly lower levels of freezing during fear conditioning, more rapid extinction of freezing behavior, and significantly lower levels of freezing during the tests of fear recovery. Unlike males that were all classified as high conditioners; female rats could be parsed into either a high or low conditioning group. However, irrespective of their level of conditioned freezing, both the high and low conditioning groups of female rats exhibited rapid extinction of conditioned freezing behavior and comparatively low levels of freezing in tests of fear recovery. Regardless of group classification, AIE had no effect on freezing behavior in female rats during acquisition, extinction, or fear recovery. Lastly, exposure of male rats to the mGlu5 positive allosteric modulator CDPPB prevented AIE-induced alterations in freezing. Taken together, these observations demonstrate sex-specific changes in conditioned fear behaviors that are reversible by pharmacological interventions that target mGlu5 receptor activation.

8.
Addict Biol ; 16(2): 215-28, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21054692

RESUMO

Relapse is one of the most problematic aspects in the treatment of alcoholism and is often triggered by alcohol-associated environmental cues. Evidence indicates that glutamate neurotransmission plays a critical role in cue-induced relapse-like behavior, as inhibition of glutamate neurotransmission can prevent reinstatement of alcohol-seeking behavior. However, few studies have examined specific changes in extracellular glutamate levels in discrete brain regions produced by exposure to alcohol-associated cues. The purpose of this study was to use glutamate oxidase (GluOx)-coated biosensors to monitor changes in extracellular glutamate in specific brain regions during cue-induced reinstatement of alcohol-seeking behavior. Male Wistar rats were implanted with indwelling jugular vein catheters and intracerebral guide cannula aimed at the basolateral amygdala (BLA) or nucleus accumbens (NAc) core, and then trained to self-administer alcohol intravenously. A separate group of animals were trained to self-administer food pellets. Each reinforcer was accompanied by the presentation of a light/tone stimulus. Following stabilization of responding for alcohol or food reinforcement, and subsequent extinction training, animals were implanted with pre-calibrated biosensors and then underwent a 1-hour cue-induced reinstatement testing period. As determined by GluOx-coated biosensors, extracellular levels of glutamate were increased in the BLA and NAc core during cue-induced reinstatement of alcohol-seeking behavior. The cumulative change in extracellular glutamate in both regions was significantly greater for cue-induced reinstatement of alcohol-seeking behavior versus that of food-seeking behavior. These results indicate that increases in glutamate transmission in the BLA and NAc core may be a neurochemical substrate of cue-evoked alcohol-seeking behavior.


Assuntos
Alcoolismo/fisiopatologia , Aminoácido Oxirredutases , Tonsila do Cerebelo/fisiopatologia , Técnicas Biossensoriais , Ácido Glutâmico/fisiologia , Motivação/fisiologia , Núcleo Accumbens/fisiopatologia , Transmissão Sináptica/fisiologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Mapeamento Encefálico , Sinais (Psicologia) , Extinção Psicológica , Masculino , Ratos , Ratos Wistar , Autoadministração
9.
Pharmacol Biochem Behav ; 211: 173292, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34710401

RESUMO

This study analyzed whether the positive allosteric modulator of metabotropic glutamate receptor type 5 (mGlu5) 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) would alleviate deficits in prepulse inhibition (PPI) and affect dopamine (DA) D2 signaling in the dorsal striatum and prefrontal cortex (PFC) in the neonatal quinpirole (NQ) model of schizophrenia (SZ). Male and female Sprague-Dawley rats were neonatally treated with either saline (NS) or quinpirole HCL (1 mg/kg; NQ), a DAD2 receptor agonist, from postnatal days (P) 1-21. Rats were raised to P44 and behaviorally tested on PPI from P44-P48. Before each trial, rats were subcutaneous (sc) administered saline or CDPPB (10 mg/kg or 30 mg/kg). On P50, rats were given a spontaneous locomotor activity test after CDPPB or saline administration. On P51, the dorsal striatum and PFC were evaluated for both arrestin-2 (ßA-2) and phospho-AKT protein levels. NQ-treated rats demonstrated a significant deficit in PPI, which was alleviated to control levels by the 30 mg/kg dose of CDPPB. There were no significant effects of CDPPB on locomotor activity. NQ treatment increased ßA-2 and decreased phospho-AKT in both the dorsal striatum and PFC, consistent with an increase DAD2 signaling. The 30 mg/kg dose of CDPPB significantly reversed changes in ßA-2 in the dorsal striatum and PFC and phospho-AKT in the PFC equivalent to controls. Both doses of CDPPB produced a decrease of phospho-AKT in the PFC compared to controls. This study revealed that a mGlu5 positive allosteric modulator was effective to alleviate PPI deficits and striatal DAD2 signaling in the NQ model of SZ.


Assuntos
Benzamidas/farmacologia , Pirazóis/farmacologia , Quimpirol/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Dopamina D2/metabolismo , Esquizofrenia/tratamento farmacológico , Filtro Sensorial/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/metabolismo , Agonistas de Dopamina/farmacologia , Feminino , Locomoção/efeitos dos fármacos , Masculino , Córtex Pré-Frontal/metabolismo , Inibição Pré-Pulso/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Esquizofrenia/metabolismo
10.
Behav Brain Res ; 415: 113517, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34389427

RESUMO

Cannabis use disorder (CUD) has doubled in prevalence over the past decade as a nation-wide trend toward legalization allows for increased drug accessibility. As a result, marijuana has become the most commonly used illicit drug in the United States particularly among the adolescent population. This is especially concerning since there is greater risk for the harmful side effects of drug use during this developmental period due to ongoing brain maturation. Increasing evidence indicates that CUD often occurs along with other debilitating conditions including both alcohol use disorder (AUD) and anxiety disorders such post-traumatic stress disorder (PTSD). Additionally, exposure to cannabis, alcohol, and stress can induce alterations in glutamate regulation and homeostasis in the prefrontal cortex (PFC) that may lead to impairments in neuronal functioning and cognition. Therefore, in order to study the relationship between drug exposure and the development of PTSD, these studies utilized rodent models to determine the impact of adolescent exposure to delta-9-tetrahydrocannabinol (THC) and ethanol on responses to fear stimuli during fear conditioning and used calcium imaging to measure glutamate activity in the prelimbic cortex during this behavioral paradigm. The results from these experiments indicate that adolescent exposure to THC and ethanol leads to enhanced sensitivity to fear stimuli both behaviorally and neuronally. Additionally, these effects were attenuated when animals were treated with the glutamatergic modulator N-acetylcysteine (NAC). In summary, these studies support the hypothesis that adolescent exposure to THC and ethanol leads to alterations in fear stimuli processing through glutamatergic reliant modifications in PFC signaling.


Assuntos
Comportamento Animal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Depressores do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Dronabinol/farmacologia , Etanol/farmacologia , Medo/efeitos dos fármacos , Fatores Etários , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Depressores do Sistema Nervoso Central/administração & dosagem , Dronabinol/administração & dosagem , Etanol/administração & dosagem , Masculino , Ratos , Ratos Wistar
11.
Alcohol Clin Exp Res ; 33(11): 1935-44, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19673742

RESUMO

BACKGROUND: Inherited human aldehyde dehydrogenase 2 (ALDH-2) deficiency reduces the risk for alcoholism. Kudzu plants and extracts have been used for 1,000 years in traditional Chinese medicine to treat alcoholism. Kudzu contains daidzin, which inhibits ALDH-2 and suppresses heavy drinking in rodents. Decreased drinking due to ALDH-2 inhibition is attributed to aversive properties of acetaldehyde accumulated during alcohol consumption. However, daidzin can reduce drinking in some rodents without necessarily increasing acetaldehyde. Therefore, a selective ALDH-2 inhibitor might affect other metabolic factors involved in regulating drinking. METHODS: Aldehyde dehydrogenase 2 inhibitors were synthesized based on the co-crystal structure of ALDH-2 and daidzin. We tested the efficacy of a highly selective reversible ALDH-2 inhibitor, CVT-10216, in models of moderate and high alcohol drinking rats. We studied 2-bottle choice and deprivation-induced drinking paradigms in Fawn Hooded (FH) rats, operant self-administration in Long Evans (LE), FH, and inbred P (iP) rats and in cue-induced reinstatement in iP rats. We also assayed blood acetaldehyde levels as well as dopamine (DA) release in the nucleus accumbens (NAc) and tested possible rewarding/aversive effects of the inhibitor in a conditioned place preference (CPP) paradigm. RESULTS: CVT-10216 increases acetaldehyde after alcohol gavage and inhibits 2-bottle choice alcohol intake in heavy drinking rodents, including deprivation-induced drinking. Moreover, CVT-10216 also prevents operant self-administration and eliminates cue-induced reinstatement of alcohol seeking even when alcohol is not available (i.e., no acetaldehyde). Alcohol stimulates DA release in the NAc, which is thought to contribute to increased drinking and relapse in alcoholism. CVT-10216 prevents alcohol-induced increases in NAc DA without changing basal levels. CVT-10216 does not show rewarding or aversive properties in the CPP paradigm at therapeutic doses. CONCLUSION: Our findings suggest that selective reversible ALDH-2 inhibitors may have therapeutic potential to reduce excessive drinking and to suppress relapse in abstinent alcoholics.


Assuntos
Dissuasores de Álcool , Consumo de Bebidas Alcoólicas/psicologia , Aldeído Desidrogenase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Isoflavonas/farmacologia , Proteínas Mitocondriais/antagonistas & inibidores , Acetaldeído/sangue , Aldeído-Desidrogenase Mitocondrial , Animais , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Sinais (Psicologia) , Dopamina/fisiologia , Extinção Psicológica/efeitos dos fármacos , Masculino , Microdiálise , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Pueraria/química , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Recidiva , Autoadministração
12.
Biochem Pharmacol ; 75(1): 218-65, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17706608

RESUMO

The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.


Assuntos
Alcoolismo/etiologia , Ácido Glutâmico/fisiologia , Transtornos Relacionados ao Uso de Substâncias/etiologia , Anfetaminas/farmacologia , Animais , Canabinoides/farmacologia , Cocaína/farmacologia , Modelos Animais de Doenças , Extinção Psicológica , Humanos , Entorpecentes/farmacologia , Plasticidade Neuronal , Nicotina/farmacologia , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Sinapses/fisiologia , Transmissão Sináptica
13.
Eur J Pharmacol ; 584(2-3): 253-62, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18346726

RESUMO

The development of selective type 5 metabotropic glutamate receptor (mGlu5) antagonists, such as 2-methyl-6-(phenylethynyl)-pyridine (MPEP) and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP), has revealed an important role for these receptors in various disorders of the nervous system including depression, anxiety, epilepsy, Parkinson's disease, drug addiction, and alcoholism. In this study, we used microarray technology to examine changes in gene expression induced by repeated administration of the mGlu5 antagonists MPEP and MTEP. Male Wistar rats (n=5 per treatment group) were administered MPEP (10 mg/kg), MTEP (10 mg/kg) or vehicle intraperitoneally twice daily for 5 days. Approximately 30 min following the final drug administration, rats were sacrificed and frontal cortices were then dissected and examined for changes in gene expression by cDNA microarray analysis. Changes in gene expression with p-values less than 0.01 were considered to be statistically significant. The expression of 63 genes was changed by both MPEP and MTEP, with 58 genes down-regulated and 5 genes up-regulated. Quantitative PCR verified the magnitude and direction of change in expression of 9 of these genes (r2=0.556, p=0.017). Pathway analysis revealed that many of the biological processes altered by repeated MPEP and MTEP treatment were related to ATP synthesis, hydrolase activity, and signaling pathways associated with mitogen-activated protein kinase (MAPK). Our results demonstrate diverse effects of MPEP and MTEP gene expression in the frontal cortex, and these results may help elucidate the mechanisms by which these compounds produce beneficial effects in animal models of various disorders of the central nervous system.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Piridinas/farmacologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Tiazóis/farmacologia , Transcrição Gênica/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Córtex Cerebral/metabolismo , Análise por Conglomerados , Metabolismo Energético/genética , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Perfilação da Expressão Gênica/métodos , Hidrolases/genética , Injeções Intraperitoneais , Sistema de Sinalização das MAP Quinases/genética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Piridinas/administração & dosagem , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiazóis/administração & dosagem
14.
Addict Biol ; 13(1): 70-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18269381

RESUMO

Acamprosate and naltrexone are widely used in the treatment of alcoholism. However, numerous studies in rodents have shown differential effects of these compounds on alcohol consumption and/or relapse-like behavior following acute versus repeated administration. In order to determine if these differential behavioral effects could be attributable to changes in extracellular levels of these compounds, we used in vivo microdialysis to monitor extracellular levels of acamprosate and naltrexone in the rat medial prefrontal cortex following acute and repeated intraperitoneal administration. For acute treatment, animals received a single administration of acamprosate (100 or 300 mg/kg) or naltrexone (1 or 3 mg/kg). For repeated treatment, animals received once daily treatment with saline, acamprosate (300 mg/kg) or naltrexone (3 mg/kg) for 10 days before a subsequent challenge with the compound according to their respective pretreatment group. Dialysate levels of acamprosate and naltrexone were analyzed by liquid chromatography-tandem mass spectrometry and high performance liquid chromatography, respectively. Following acute administration, peak dialysate concentrations of each compound were dose-dependent, observed within 1 hour of administration, and were found to be in the low micromolar range for acamprosate and in the low to mid-nanomolar range for naltrexone. Pretreatment with acamprosate, but not naltrexone, for 10 days resulted in higher dialysate concentrations of the compound relative to saline-pretreated controls. Thus, repeated administration of acamprosate, but not naltrexone, results in augmented extracellular levels of the compound in the brain relative to saline-pretreated controls, which may explain the need for repeated administration of acamprosate in order to observe effects on alcohol consumption and/or relapse.


Assuntos
Dissuasores de Álcool/administração & dosagem , Dissuasores de Álcool/farmacocinética , Líquido Extracelular/metabolismo , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Microdiálise , Naltrexona/administração & dosagem , Naltrexona/farmacocinética , Taurina/análogos & derivados , Acamprosato , Animais , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Esquema de Medicação , Injeções Intraperitoneais , Masculino , Taxa de Depuração Metabólica/fisiologia , Ratos , Ratos Long-Evans , Taurina/administração & dosagem , Taurina/farmacocinética
15.
Psychopharmacology (Berl) ; 195(3): 397-406, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17764007

RESUMO

RATIONALE: Acamprosate (calcium acetylhomotaurinate) is a glutamatergic neuromodulator used for the treatment of alcoholism, but its potential efficacy in the treatment of psychostimulant addiction has not been explored. OBJECTIVES: The purpose of this study was to assess the effects of acamprosate on cocaine-stimulated locomotor activity, cocaine self-administration, and cue- and cocaine-induced reinstatement of cocaine-seeking behavior. MATERIALS AND METHODS: All experiments utilized once-daily treatment for 5 consecutive days. First, the effects of saline or acamprosate (100, 300, or 500 mg/kg intraperitoneally) on body weight were examined. On the last day of treatment, locomotor activity was assessed before and after drug treatment, after which all animals received an acute challenge of cocaine (10 mg/kg). Next, a separate group of rats were trained to intravenously (IV) self-administer cocaine (0.6 mg/kg per infusion), subjected to extinction procedures, and then tested for effects of acamprosate on cue- or cocaine-induced reinstatement. A third group of rats was trained to self-administer cocaine as described above and were treated with saline or acamprosate before daily IV self-administration sessions. RESULTS: Repeated administration of 500 mg/kg acamprosate but not lower doses produced reductions in both body weight and spontaneous locomotor activity, and thus this dose was not tested further. Acamprosate at 300 mg/kg but not 100 mg/kg attenuated both cocaine- and cue-induced reinstatement without altering baseline patterns of cocaine self-administration or cocaine-stimulated hyperlocomotion. CONCLUSIONS: Acamprosate attenuates both drug- and cue-induced reinstatement of cocaine-seeking behavior, suggesting that this compound may serve as a potential treatment for preventing relapse in cocaine-addicted humans.


Assuntos
Dissuasores de Álcool/farmacologia , Transtornos Relacionados ao Uso de Cocaína/prevenção & controle , Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Sinais (Psicologia) , Taurina/análogos & derivados , Acamprosato , Dissuasores de Álcool/administração & dosagem , Animais , Comportamento Aditivo/metabolismo , Comportamento Aditivo/psicologia , Transtornos Relacionados ao Uso de Cocaína/psicologia , Relação Dose-Resposta a Droga , Extinção Psicológica/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recidiva , Autoadministração , Taurina/administração & dosagem , Taurina/farmacologia
16.
Alcohol Clin Exp Res ; 31(12): 2065-72, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17949467

RESUMO

BACKGROUND: Alcohol exposure during development has been shown to alter a variety of social behaviors in both humans and rodents. Sexual behavior in rodents has been well characterized and lends itself to a detailed investigation of the manner in which ethanol impacts this particular social behavior. METHODS: Rats were exposed to ethanol during both the prenatal and early postnatal period (ET). Control groups included rats exposed to the administration procedures alone (intubated-control) and nontreated controls (NC). Sexual behavior of intact naïve female rats in estrus was assessed in adulthood (approximately postnatal day 90) and activity was measured by the number of crossings between chambers in the 3-chamber test apparatus. A separate study examined the olfactory preferences for 4 odors by intact naïve female rats in all 3 groups. The 4 odors were the odors resulting from 1 hour of occupation of the test chamber by an intact male, 1 hour of occupation of the test chamber by a gonadectomized male, 0.5 ml of urine from an intact male, and 0.5 ml of urine from a gonadectomized male. RESULTS: ET female rats showed a reduced return latency after ejaculation compared to both control groups. There was a trend toward a reduction in percent exits after all forms of male behavior in the ET animals compared to the control groups. No significant differences across groups were seen in the lordosis quotient, activity, or the behavior of the nonexperimental male. ET female rats showed a reduced preference for the odor from the intact male compared to both control groups and a reduced preference for the odor from the gonadectomized male compared to NC females only. CONCLUSIONS: These data suggest that ethanol exposure during the prenatal and postnatal period in females alters sexual motivation and changes the processing of olfactory cues and possibly coital cues from male rats.


Assuntos
Etanol/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Comportamento Sexual Animal , Animais , Comportamento de Escolha , Copulação , Sinais (Psicologia) , Feminino , Masculino , Motivação , Gravidez , Ratos , Ratos Long-Evans , Atrativos Sexuais , Olfato
17.
Behav Brain Res ; 332: 259-268, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28600000

RESUMO

Fetal Alcohol Syndrome (FAS) is associated with high rates of drug addiction in adulthood. One possible basis for increased drug use in this population is altered sensitivity to drug-associated contexts. This experiment utilized a rat model of FASD to examine behavioral and neural changes in the processing of drug cues in adulthood. Alcohol was given by intragastric intubation to pregnant rats throughout gestation and to rat pups during the early postnatal period (ET group). Controls consisted of a non-treated group (NC) and a pair-fed group given the intubation procedure without alcohol (IC). On postnatal day (PD) 90, rats from all treatment groups were given saline, 0.3mg/kg, 3.0mg/kg, or 10.0mg/kg cocaine pairings with a specific context in the conditioned place preference (CPP) paradigm. While control animals of both sexes showed cocaine CPP at the 3.0 and 10.0mg/kg doses, ET females also showed cocaine CPP at 0.3mg/kg. This was accompanied by a decrease in c-Fos/GAD67 cells in the nucleus accumbens (NAc) shell and GAD67-only cells in the NAc shell and PFC at this 0.3mg/kg dose. ET males failed to show cocaine CPP at the 3.0mg/kg dose. This was associated with an increase in c-Fos only-labeled cells in the NAc core and PFC at this 3.0mg/kg dose. These results suggest that developmental alcohol exposure has a sexually-dimorphic effect on cocaine's conditioning effects in adulthood and the NAc.


Assuntos
Cocaína/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Caracteres Sexuais , Comportamento Espacial/efeitos dos fármacos , Animais , Depressores do Sistema Nervoso Central/toxicidade , Condicionamento Psicológico/fisiologia , Relação Dose-Resposta a Droga , Etanol/toxicidade , Transtornos do Espectro Alcoólico Fetal/patologia , Transtornos do Espectro Alcoólico Fetal/psicologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/patologia , Neurônios GABAérgicos/fisiologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/patologia , Núcleo Accumbens/fisiopatologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Ratos Long-Evans , Comportamento Espacial/fisiologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/patologia , Área Tegmentar Ventral/fisiopatologia
18.
Neuropsychopharmacology ; 42(5): 1024-1036, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27620551

RESUMO

Repeated binge-like exposure to alcohol during adolescence has been reported to perturb prefrontal cortical development, yet the mechanisms underlying these effects are unknown. Here we report that adolescent intermittent ethanol exposure induces cellular and dopaminergic abnormalities in the adult prelimbic cortex (PrL-C). Exposing rats to alcohol during early-mid adolescence (PD28-42) increased the density of long/thin dendritic spines of layer 5 pyramidal neurons in the adult PrL-C. Interestingly, although AIE exposure did not alter the expression of glutamatergic proteins in the adult PrL-C, there was a pronounced reduction in dopamine (DA) D1 receptor modulation of both intrinsic firing and evoked NMDA currents in pyramidal cells, whereas D2 receptor function was unaltered. Recordings from fast-spiking interneurons also revealed that AIE reduced intrinsic excitability, glutamatergic signaling, and D1 receptor modulation of these cells. Analysis of PrL-C tissue of AIE-exposed rats further revealed persistent changes in the expression of DA-related proteins, including reductions in the expression of tyrosine hydroxylase and catechol-O-methyltransferase (COMT). AIE exposure was associated with hypermethylation of the COMT promoter at a conserved CpG site in exon II. Taken together, these findings demonstrate that AIE exposure disrupts DA and GABAergic transmission in the adult medial prefrontal cortex (mPFC). As DA and GABA work in concert to shape and synchronize neuronal ensembles in the PFC, these alterations could contribute to deficits in behavioral control and decision-making in adults who abused alcohol during adolescence.


Assuntos
Espinhas Dendríticas/efeitos dos fármacos , Dopamina/fisiologia , Etanol/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Catecol O-Metiltransferase/metabolismo , Espinhas Dendríticas/patologia , Dopamina/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Masculino , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Ratos Long-Evans , Receptores de AMPA/fisiologia , Receptores Dopaminérgicos/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Physiol Behav ; 87(2): 330-7, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16336982

RESUMO

Ethanol exposure during development has been shown to alter social behaviors in people, but the range of deficits is not clear. Using an animal model of Fetal Alcohol Spectrum Disorders, inter-male aggression and testosterone levels were examined in adult rats. Rats were exposed to ethanol during the entire prenatal period and from postnatal day 2 through 10. Ethanol was administered via intragastric intubation. Two other groups consisted of a nontreated control and an intubated control group that was exposed to the administration procedures but not ethanol. Both offensive and defensive aggression were examined in experimental residents and intruders under three different housing conditions for the resident males: (1) with another male, (2) with a pregnant female, and (3) with a female and litter fathered by the experimental animal. When housed with a female and litter, ethanol-exposed rats displayed reduced offensive aggression compared to control groups under the same condition. Defensive aggression in the non-experimental intruders was reduced in this same condition. There were no differences in duration of non-aggressive social behaviors among the groups in any of the housing conditions. Testosterone levels were reduced in ethanol-exposed rats compared to controls. In summary, ethanol exposure over the combined prenatal and postnatal periods reduces aggressive behavior in a condition where aggressive behavior is normally seen. This reduction may be related to lower testosterone levels.


Assuntos
Agressão/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Testosterona/sangue , Animais , Peso Corporal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/sangue , Ingestão de Alimentos/efeitos dos fármacos , Etanol/sangue , Feminino , Habitação , Masculino , Dor/psicologia , Medição da Dor/efeitos dos fármacos , Gravidez , Ratos , Ratos Long-Evans
20.
CNS Neurol Disord Drug Targets ; 14(4): 476-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25921744

RESUMO

Positive and negative allosteric modulators (PAMs and NAMs, respectively) of type 5 metabotropic glutamate receptors (mGluR5) are currently being investigated as novel treatments for neuropsychiatric diseases including drug addiction, schizophrenia, and Fragile X syndrome. However, only a handful of studies have examined the effects of mGluR5 PAMs or NAMs on the structural plasticity of dendritic spines in otherwise naïve animals, particularly in brain regions mediating executive function. In the present study, we assessed dendritic spine density and morphology in pyramidal cells of the medial prefrontal cortex (mPFC) after repeated administration of either the prototypical mGluR5 PAM 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5- yl)benzamide (CDPPB, 20 mg/kg), the clinically utilized mGluR5 NAM 1-(3-chlorophenyl)-3-(3-methyl-5-oxo-4Himidazol- 2-yl)urea (fenobam, 20 mg/kg), or vehicle in male Sprague-Dawley rats. Following once daily treatment for 10 consecutive days, coronal brain sections containing the mPFC underwent diolistic labeling and 3D image analysis of dendritic spines. Compared to vehicle treated animals, rats administered fenobam exhibited significant increases in dendritic spine density and the overall frequency of spines with small (<0.2 µm) head diameters, decreases in frequency of spines with medium (0.2-0.4 µm) head diameters, and had no changes in frequency of spines with large head diameters (>0.4 µm). Administration of CDPPB had no discernable effects on dendritic spine density or morphology, and neither CDPPB nor fenobam had any effect on spine length or volume. We conclude that mGluR5 PAMs and NAMs differentially affect mPFC dendritic spine structural plasticity in otherwise naïve animals, and additional studies assessing their effects in combination with cognitive or behavioral tasks are needed.


Assuntos
Forma Celular/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação Alostérica , Animais , Benzamidas/farmacologia , Espinhas Dendríticas/metabolismo , Imidazóis/farmacologia , Masculino , Neurônios/citologia , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA