Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gene ; 351: 159-69, 2005 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-15922872

RESUMO

The RhoGAP Rgd1p is involved in different signal transduction pathways in Saccharomyces cerevisiae through its regulatory activity upon the Rho3 and Rho4 GTPases. The rgd1Delta mutant, which presents a mortality at the entry into the stationary phase in minimal medium, is sensitive to medium acidification caused by biomass augmentation. We showed that low-pH shock leads to abnormal intracellular acidification of the rgd1Delta mutant. Transcriptional regulation of RGD1 was studied in several stress conditions and we observed an activation of RGD1 transcription at low pH and after heat and oxidative shocks. The transcription level at low pH and after heat shock was demonstrated to depend on the STRE box located in the RGD1 promoter. The general stress-activated transcription factors Msn2p and Msn4p as well as the HOG pathway were shown to mainly act on the basal RGD1 transcriptional level in normal and stress conditions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação/genética , Meios de Cultura/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas Ativadoras de GTPase/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ácido Clorídrico/farmacologia , Concentração de Íons de Hidrogênio , Óperon Lac/genética , Mutação , Fenótipo , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , beta-Galactosidase/metabolismo
2.
J Cell Biol ; 192(5): 855-71, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21383080

RESUMO

Centrosomes are closely associated with the nuclear envelope (NE) throughout the cell cycle and this association is maintained in prophase when they separate to establish the future mitotic spindle. At this stage, the kinetochore constituents CENP-F, NudE, NudEL, dynein, and dynactin accumulate at the NE. We demonstrate here that the N-terminal domain of the nuclear pore complex (NPC) protein Nup133, although largely dispensable for NPC assembly, is required for efficient anchoring of the dynein/dynactin complex to the NE in prophase. Nup133 exerts this function through an interaction network via CENP-F and NudE/EL. We show that this molecular chain is critical for maintaining centrosome association with the NE at mitotic entry and contributes to this process without interfering with the previously described RanBP2-BICD2-dependent pathway of centrosome anchoring. Finally, our study reveals that tethering of centrosomes to the nuclear surface at the G2/M transition contributes, along with other cellular mechanisms, to early stages of bipolar spindle assembly.


Assuntos
Centrossomo/metabolismo , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Poro Nuclear/metabolismo , Prófase , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Linhagem Celular Tumoral , Polaridade Celular , Centrossomo/ultraestrutura , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Complexo Dinactina , Dineínas/metabolismo , Células HeLa , Humanos , Espaço Intranuclear/metabolismo , Espaço Intranuclear/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Antígenos de Histocompatibilidade Menor , Membrana Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Fuso Acromático/metabolismo
3.
J Cell Biol ; 189(5): 795-811, 2010 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-20498018

RESUMO

The biogenesis of nuclear pore complexes (NPCs) represents a paradigm for the assembly of high-complexity macromolecular structures. So far, only three integral pore membrane proteins are known to function redundantly in NPC anchoring within the nuclear envelope. Here, we describe the identification and functional characterization of Pom33, a novel transmembrane protein dynamically associated with budding yeast NPCs. Pom33 becomes critical for yeast viability in the absence of a functional Nup84 complex or Ndc1 interaction network, which are two core NPC subcomplexes, and associates with the reticulon Rtn1. Moreover, POM33 loss of function impairs NPC distribution, a readout for a subset of genes required for pore biogenesis, including members of the Nup84 complex and RTN1. Consistently, we show that Pom33 is required for normal NPC density in the daughter nucleus and for proper NPC biogenesis and/or stability in the absence of Nup170. We hypothesize that, by modifying or stabilizing the nuclear envelope-NPC interface, Pom33 may contribute to proper distribution and/or efficient assembly of nuclear pores.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular/genética , Sequência de Aminoácidos , Proliferação de Células , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Poro Nuclear/genética , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Filogenia , Ligação Proteica/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Telófase/fisiologia
4.
Microbiology (Reading) ; 152(Pt 3): 695-708, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16514150

RESUMO

Rgd1, a GTPase-activating protein, is the only known negative regulator of the Rho3 and Rho4 small GTPases in the yeast Saccharomyces cerevisiae. Rho3p and Rho4p are involved in regulating cell polarity by controlling polarized exocytosis. Co-inactivation of RGD1 and WSC1, which is a cell wall sensor-encoding gene, is lethal. Another plasma membrane sensor, Mid2p, is known to rescue the rgd1Deltawsc1Delta synthetic lethality. It has been proposed that Wsc1p and Mid2p act upstream of the protein kinase C (PKC) pathway to function as mechanosensors of cell wall stress. Analysis of the synthetic lethal phenomenon revealed that production of activated Rho3p and Rho4p leads to lethality in wsc1Delta cells. Inactivation of RHO3 or RHO4 was able to rescue the rgd1Deltawsc1Delta synthetic lethality, supporting the idea that the accumulation of GTP-bound Rho proteins, following loss of Rgd1p, is detrimental if the Wsc1 sensor is absent. In contrast, the genetic interaction between RGD1 and MID2 was not due to an accumulation of GTP-bound Rho proteins. It was proposed that simultaneous inactivation of RGD1 and WSC1 constitutively activates the PKC-mitogen-activated protein kinase (MAP kinase) pathway. Moreover, it was shown that the activity of this pathway was not involved in the synthetic lethal interaction, which suggests the existence of another mechanism. Consistent with this idea, it was found that perturbations in Rho3-mediated polarized exocytosis specifically impair the abundance and processing of Wsc1 and Mid2 proteins. Hence, it is proposed that Wsc1p participates in the regulation of a Rho3/4-dependent cellular mechanism, and that this is distinct from the role of Wsc1p in the PKC-MAP kinase pathway.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Regulação Fúngica da Expressão Gênica , Resposta ao Choque Térmico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
Eukaryot Cell ; 4(8): 1375-86, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16087742

RESUMO

The protein kinase C (PKC) pathway is involved in the maintenance of cell shape and cell integrity in Saccharomyces cerevisiae. Here, we show that this pathway mediates tolerance to low pH and that the Bck1 and Slt2 proteins belonging to the mitogen-activated protein kinase cascade are essential for cell survival at low pH. The PKC pathway is activated during acidification of the extracellular environment, and this activation depends mainly on the Mid2p cell wall sensor. Rgd1p, which encodes a Rho GTPase-activating protein for the small G proteins Rho3p and Rho4p, also plays a role in low-pH response. The rgd1Delta strain is sensitive to low pH, and Rgd1p activates the PKC pathway in an acidic environment. Inactivation of both genes in the double mutant rgd1Delta mid2Delta strain renders yeast cells unable to survive at low pH as in bck1Delta and slt2Delta strains. Our data provide evidence for the existence of two distinct ways, one involving Mid2p and the other involving Rgd1p, with both converging to the cell integrity pathway to mediate low-pH tolerance in Saccharomyces cerevisiae. Nevertheless, even if Rgd1p acts on the PKC pathway, it seems that its mediating action on low-pH tolerance is not limited to this pathway. As the Mid2p amount plays a role in rgd1Delta sensitivity to low pH, Mid2p seems to act more like a molecular rheostat, controlling the level of PKC pathway activity and thus allowing phenotypical expression of RGD1 inactivation.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Membrana/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação ao Cálcio/genética , Sobrevivência Celular , Parede Celular , Proteínas Ativadoras de GTPase/genética , Genótipo , Concentração de Íons de Hidrogênio , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Domínio MADS , Glicoproteínas de Membrana , Proteínas de Membrana/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Fosforilação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Supressão Genética/genética , Temperatura , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA