RESUMO
Lumbar punctures (LP) are routinely used to administer intrathecal chemotherapy for children and adults with hematologic malignancies. The current guidelines suggest a platelet threshold of ≥ 50 × 109/L prior to LP for intrathecal chemotherapy (ITC). This can be challenging in patients with hematological malignancies who are thrombocytopenic. We conducted a retrospective chart review of 900 LPs for ITC and compared adverse events in patients with a platelet count of ≥ 50 × 109/L and < 50 × 109/L. Cohort 1 included 682 LPs (75.8%) with a pre-procedure platelet count ≥ 50 × 109/L, and cohort 2 included 218 LPs (24.2%) with a pre-procedure platelet count < 50 × 109/L. Cohort 2 was further subdivided into pre-procedure platelet counts of 41 × 109/L-49 × 109/L (n = 43), 31 × 109/L-40 × 109/L (n = 77), 21 × 109/L-30 × 109/L (n = 84), and 11 × 109/L-20 × 109/L (n = 14). Among 900 LP procedures, a pre-procedure platelet count < 50 × 109/L did not demonstrate a higher rate of post-procedure adverse events (6.5% vs 6.8%, p = 0.8237). When cohort 2 was further stratified, the cohort with a pre-procedure platelet count of 21 × 109/L-30 × 109/L had the highest percentage of complications from LP (9.5%) and the highest rates of traumatic taps with observed LP RBC count > 200 (35.7%, p = 0.0015). The rate of red blood cells (RBC) in the CSF was significantly higher in the group with platelets < 50 × 109/L with observed LP RBC count ≥ 200 (31.2% vs 20.5%, p = 0.0016), ≥ 500 (27.1% vs 14.6%, p < 0.0001), and ≥ 1000 (23% vs 11.6%, p < 0.0001). No instances of epidural hematomas were seen. We found no significant difference in bleeding complications between patients undergoing LPs for ITC with a platelet count above or below 50 × 109/L.
Assuntos
Neoplasias Hematológicas , Trombocitopenia , Criança , Adulto , Humanos , Punção Espinal/efeitos adversos , Estudos Retrospectivos , Trombocitopenia/etiologia , Lipopolissacarídeos , Transfusão de Plaquetas , Neoplasias Hematológicas/complicaçõesRESUMO
"Save Soil Save Earth" is not just a catchphrase; it is a necessity to protect soil ecosystem from the unwanted and unregulated level of xenobiotic contamination. Numerous challenges such as type, lifespan, nature of pollutants and high cost of treatment has been associated with the treatment or remediation of contaminated soil, whether it be either on-site or off-site. Due to the food chain, the health of non-target soil species as well as human health were impacted by soil contaminants, both organic and inorganic. In this review, the use of microbial omics approaches and artificial intelligence or machine learning has been comprehensively explored with recent advancements in order to identify the sources, characterize, quantify, and mitigate soil pollutants from the environment for increased sustainability. This will generate novel insights into methods for soil remediation that will reduce the time and expense of soil treatment.
Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Ecossistema , Inteligência Artificial , Poluição Ambiental/prevenção & controle , Metais Pesados/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , SoloRESUMO
In the current study, we described the synthesis of ten new 5-(3-Bromophenyl)-N-aryl-4H-1,2,4-triazol-3-amine analogs (4a-j), as well as their characterization, anticancer activity, molecular docking studies, ADME, and toxicity prediction. The title compounds (4a-j) were prepared in three steps, starting from substituted anilines in a satisfactory yield, followed by their characterization via spectroscopic techniques. The National Cancer Institute (NCI US) protocol was followed to test the compounds' (4a-j) anticancer activity against nine panels of 58 cancer cell lines at a concentration of 10-5 M, and growth percent (GP) as well as percent growth inhibition (PGI) were calculated. Some of the compounds demonstrated significant anticancer activity against a few cancer cell lines. The CNS cancer cell line SNB-75, which showed a PGI of 41.25 percent, was discovered to be the most sensitive cancer cell line to the tested compound 4e. The mean GP of compound 4i was found to be the most promising among the series of compounds. The five cancer cell lines that were found to be the most susceptible to compound 4i were SNB-75, UO-31, CCRF-CEM, EKVX, and OVCAR-5; these five cell lines showed PGIs of 38.94, 30.14, 26.92, 26.61, and 23.12 percent, respectively, at 10-5 M. The inhibition of tubulin is one of the primary molecular targets of many anticancer agents; hence, the compounds (4a-j) were further subjected to molecular docking studies looking at the tubulin-combretastatin A-4 binding site (PDB ID: 5LYJ) of tubulin. The binding affinities were found to be efficient, ranging from -6.502 to -8.341 kcal/mol, with two major electrostatic interactions observed: H-bond and halogen bond. Ligand 4i had a binding affinity of -8.149 kcal/mol with the tubulin-combretastatin A-4 binding site and displayed a H-bond interaction with the residue Asn258. The ADME and toxicity prediction studies for each compound were carried out using SwissADME and ProTox-II software. None of the compounds' ADME predictions showed that they violated Lipinski's rule of five. All of the compounds were also predicted to have LD50 values between 440 and 500 mg/kg, putting them all in class IV toxicity, according to the toxicity prediction. The current discovery could potentially open up the opportunity for further developments in cancer.
Assuntos
Antineoplásicos , Tubulina (Proteína) , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Tubulina (Proteína)/metabolismo , Aminas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Proliferação de Células , Estrutura MolecularRESUMO
Global rise in the generation of waste has caused an enormous environmental concern and waste management problem. The untreated carbon rich waste serves as a breeding ground for pathogens and thus strategies for production of carbon rich biochar from waste by employing different thermochemical routes namely hydrothermal carbonization, hydrothermal liquefaction and pyrolysis has been of interest by researchers globally. Biochar has been globally produced due to its diverse applications from environmental bioremediation to energy storage. Also, several factors affect the production of biochar including feedstock/biomass type, moisture content, heating rate, and temperature. Recently the application of biochar has increased tremendously owing to the cost effectiveness and eco-friendly nature. Thus this communication summarized and highlights the preferred feedstock for optimized biochar yield along with the factor influencing the production. This review provides a close view on biochar activation approaches and synthesis techniques. The application of biochar in environmental remediation, composting, as a catalyst, and in energy storage has been reviewed. These informative findings were supported with an overview of lifecycle and techno-economical assessments in the production of these carbon based catalysts. Integrated closed loop approaches towards biochar generation with lesser/zero landfill waste for safeguarding the environment has also been discussed. Lastly the research gaps were identified and the future perspectives have been elucidated.
Assuntos
Carbono , Recuperação e Remediação Ambiental , Animais , Biodegradação Ambiental , Estágios do Ciclo de Vida , PiróliseRESUMO
A preponderance of recent evidence indicates that oxybenzone and other personal-care product chemicals threaten the biota inhabiting various ecological niches. What is understudied is the ecotoxicological impact of oxybenzone, a UV filter in sunscreens and anti-aging products, to terrestrial/soil organisms that are keystone species in these habitats. In the present study, acute exposure (14-day) to oxybenzone resulted in earthworm mortality (LC50 of 364 mg/kg) and growth rate inhibition. Environmentally relevant concentration of oxybenzone (3.64, 7.28 and 36.4 mg/kg) at exposures of 7-day, 14-day, 28-day induced oxidative stress and neurotoxicity followed by perturbations in reproduction processes and changes in vital organs. Decreased levels of superoxide dismutase (SOD) and catalase (CAT) activity were statistically lower than controls (p < 0.05) on day 14 for all three concentrations, while glutathione-s-transferase (GST) activity was significantly elevated from controls on days 7 and 14. On day 28, SOD and CAT activities were either not significantly different from the control or were higher, demonstrating a temporal multiphasic response of anti-oxidant enzymes. GST activity on day 28 was significantly reduced compared to controls. Acetylcholinesterase levels across the three-time points exhibited a complicated behaviour, with every exposure concentration being significantly different from the control. Chronic exposure negatively influences earthworm health status with elevated biomarker values analysed using IBRv2 index. This, in turn, impacted higher levels of hierarchical organization, significantly impairing reproduction and organismal homeostasis at the histological level and manifesting as decreasing cocoon formation and successful hatching events. Thus, the overall findings demonstrate that oxybenzone is toxic to Eisenia fetida at low-level, long-term exposure. Based on the concentration verification analysis and application of the EPA PestDF tool, oxybenzone undergoes single first-order kinetics degradation in OECD soil with DT50 and DT90 as 8.7-28.9 days, respectively.
Assuntos
Oligoquetos , Poluentes do Solo , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Benzofenonas , Catalase/metabolismo , Oligoquetos/metabolismo , Estresse Oxidativo , Solo/química , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Superóxido Dismutase/metabolismoRESUMO
In this "plastic era" with the increased use of plastic in day today's life the accumulation of its degraded products like microplastics or plastic additives such as Bisphenol A(BPA) is also increasing. BPA is an endocrine-disrupting chemical used as a plasticizing agent in clear plastic, building materials, coatings, and epoxy resin. Several enzymes including laccases and lipases have been studied for the reduction of BPA toxicity. Over the decades of encountering these toxicants, microorganisms have evolved to degrade different classes of plastic additives. Since the degradation of BPA is a long process thus meta-omics approaches have been employed to identify the active microbiota and microbial dynamics involved in the mitigation of BPA. It is also necessary to investigate the impact of processing activities on transit of BPA in food items and to limit its entrance in food world. This review summarizes a comprehensive overview on BPA sources, toxicity, bio-based mitigation approaches along with a deeper understanding of multi-omics approaches for its reduction and risk analysis. Knowledge gaps and opportunities have been comprehensively compiled that would aid the state-of-the-art information in the available literature for the researchers to further address this issue.
Assuntos
Disruptores Endócrinos , Plásticos , Compostos Benzidrílicos/análise , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Resinas Epóxi , Microplásticos , Fenóis , Medição de RiscoRESUMO
Photodynamic therapy (PDT) is often used in preclinical and clinical treatment regimens. Reactive oxygen species (ROS) generated by photosensitizers (PSs) upon exposure to light induce cell death via diverse mechanisms. PSs can exert therapeutic effects in different cellular organelles, although the efficacy of organelle-specific PDT has yet to be determined as most previous studies use different PSs in different organelles. Here, we explored how a single PS, chlorin e6 (Ce6), targeted to different organelles altered the effectiveness of PDT. Ce6 intrinsically localizes to the ER after 4 h of incubation. Modification of Ce6 via conjugation with an octapeptide (LS765), a monosubstituted triphenylphosphonium (TPP) derivative (LS897), or a disubstituted TPP derivative (LS909) altered the intrinsic localization. We determined that LS765 and LS9897 predominantly accumulated in the lysosomes, but LS909 trafficked equally to both the mitochondria and the lysosomes. Moreover, the conjugation altered the type of ROS produced by Ce6, increasing the ratio of hydrogen peroxide to hydroxyl radicals. Irradiation of identical concentrations of the PSs in solution with 650 nm, 0.84 mW/cm2 light for 10 min showed that the TPP conjugates nearly doubled the hydrogen peroxide production from â¼0.2 µM for Ce6 and LS765 to â¼0.37 µM for LS897 and LS909. In contrast, Ce6 produced â¼1.5-fold higher hydroxyl radicals than its conjugates. To compare the effect of each PS on cell death, we normalized the intracellular concentration of each PS. Hydrogen peroxide-producing PSs are effective PDT agents in the lysosomes while the hydroxyl-generating PSs are very effective in the ER. Compared to the PSs that accumulated in the lysosomes, only the ER-targeted Ce6 exerted >50% cell death at either low light power or low intracellular concentration. By delineating the contributions of cellular organelles and types of ROS produced, our work suggests that targeting hydroxyl radical-producing PSs to the ER is an exciting strategy to improve the therapeutic outcome of PDT.
Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Radical Hidroxila/metabolismo , Organelas/efeitos dos fármacos , Fotoquimioterapia/métodos , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Organelas/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
Organic UV filters (OUVFs) are vital components in various personal care products (PCPs) and commercial goods, with the annual consumption estimated at 10,000 tons. Consequently, the unavoidable use of OUVFs in PCPs and other unregulated commercial applications could present a considerable risk to human and environmental health. These chemical entities enter terrestrial ecosystems through wastewater discharge, agriculture, atmospheric deposition, and recreational activities. Compared to aqueous ecosystems, the effects of OUVFs on terrestrial environments should be more studied and potentially underestimated. The present review addresses the abovementioned gap by summarizing 189 studies conducted between 2006 and 2024, focusing on the analytical measures, occurrence, and ecotoxicological effects of OUVFs on terrestrial ecosystems. These studies underscore the harmful effects of certain OUVFs on the development, reproduction, and endocrine systems of terrestrial organisms, highlighting the necessity for comprehensive toxicological assessments to understand their impacts on non-target species in terrestrial ecosystems. Besides, by underscoring the ecological effects of OUVFs, this review aims to guide future research and inform regulatory measures to mitigate the risks posed by these widespread contaminants. Meanwhile, interdisciplinary research is essential, integrating environmental science, toxicology, ecology, and chemistry to tackle OUVF challenges in terrestrial ecosystems.
Assuntos
Ecossistema , Protetores Solares , Protetores Solares/toxicidade , Monitoramento Ambiental , Poluentes Ambientais/análiseRESUMO
Per- and polyfluoroalkyl substances (PFAS) comprise many chemicals with strong carbon-carbon and carbon-fluorine bonds and have extensive industrial applications in manufacturing several consumer products. The solid covalent bonding makes them more persistent in the environment and stays away from all types of degradation, naming them 'forever chemicals.' Zebrafish (Danio rerio) was used to evaluate the genotoxic and cytotoxic effects of legacy PFAS, Perfluorooctane sulfonate (PFOS), and its alternatives, such as Perfluoro-2-methyl-3-oxahexanoic acid ammonium (GenX) and 7H-Perfluoro-3,6-dioxa-4-methyl-octane-1-sulfonic acid (Nafion by-product 2 [NBP2]) upon single and combined exposure at an environmental concentration of 10⯵g/L for 48-h. Erythrocyte micronucleus cytome assay (EMNCA) revealed an increased frequency of micronuclei (MN) in fish erythrocytes with a significant increase in NBP2-treated fish. The order of genotoxicity noticed was NBP2â¯>â¯PFOSâ¯>â¯Mixtureâ¯>â¯GenX in D. rerio. Fish exposed to PFOS and its alternatives in single and combined experiments did not cause any significant difference in nuclear abnormalities. However, PFOS and combined exposure positively inhibit cytokinesis, resulting in an 8.16 and 7.44-fold-change increase of binucleated cells. Besides, statistically, increased levels of reactive oxygen species (ROS) and malondialdehyde (MDA) content indicate oxidative stress in D. rerio. In addition, 'forever chemicals' resulted in cytotoxicity, as evident through changes in nucleus width to the erythrocyte length in NBP2 and mixture exposure groups. The findings revealed that PFAS alternative NBP2 is more toxic than PFOS in inducing DNA damage and cytotoxicity. In addition, all three tested 'forever chemicals' induced ROS and lipid peroxidation after individual and combined exposure. The present work is the first to concern the genotoxicity and cytotoxicity of 'forever chemicals' in the aquatic vertebrate D. rerio.
Assuntos
Ácidos Alcanossulfônicos , Dano ao DNA , Fluorocarbonos , Testes para Micronúcleos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Fluorocarbonos/toxicidade , Testes para Micronúcleos/métodos , Ácidos Alcanossulfônicos/toxicidade , Dano ao DNA/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Mutagênicos/toxicidadeRESUMO
Microplastic (MP) pollution is becoming an emerging environmental concern across aquatic and terrestrial ecosystems. Plastic mulching and the use of pesticides in agriculture can lead to microplastics and agrochemicals in soil, which can result in unintended exposure to non-target organisms. The combined toxicity of multiple stressors represents a significant paradigm shift within the field of ecotoxicology, and its exploration within terrestrial ecosystems involving microplastics is still relatively limited. The present study investigated the combined effects of polyethylene MP (PE-MP) and the agrochemical carbendazim (CBZ) on the earthworm Eisenia fetida at different biological levels of organization. While E. fetida survival and reproduction did not exhibit significant effects following PE-MP treatment, there was a reduction in cocoon and hatchling numbers. Notably, prolonged exposure revealed delayed toxicity, leading to substantial growth impairment. Exposure to CBZ led to significant alterations in the endpoints mentioned above. While there was a decrease in cocoon and hatchling numbers, the combined treatment did not yield significant effects on earthworm reproduction except at higher concentrations. However, lower concentrations of PE-MP alongside CBZ induced a noteworthy decline in biomass content, signifying a form of potentiation interaction. In addition, concurrent exposure led to synergistic effects, from oxidative stress to modifications in vital organs such as the body wall, intestines, and reproductive structures (spermathecae, seminal vesicles, and ovarian follicles). The comparison of multiple endpoints revealed that seminal vesicles and ovarian follicles were the primary targets during the combined exposure. The research findings suggest that there are variable and complex responses to microplastic toxicity in terrestrial ecosystems, especially when combined with other chemical stressors like agrochemicals. Despite these difficulties, the study implies that microplastics can alter earthworms' responses to agrochemical exposure, posing potential ecotoxicological risks to soil fauna.
Assuntos
Benzimidazóis , Carbamatos , Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Feminino , Masculino , Microplásticos/toxicidade , Plásticos/toxicidade , Polietileno/toxicidade , Ecotoxicologia , Ecossistema , Poluentes do Solo/análise , Solo/química , Praguicidas/farmacologiaRESUMO
Waste disposal in landfills remains a global concern. Despite technological developments, landfill leachate poses a hazard to ecosystems and human health since it acts as a secondary reservoir for legacy and emerging pollutants. This study provides a systematic and scientometric review of the nature and toxicity of pollutants generated by landfills and means of assessing their potential risks. Regarding human health, unregulated waste disposal and pathogens in leachate are the leading causes of diseases reported in local populations. Both in vitro and in vivo approaches have been employed in the ecotoxicological risk assessment of landfill leachate, with model organisms ranging from bacteria to birds. These studies demonstrate a wide range of toxic effects that reflect the complex composition of leachate and geographical variations in climate, resource availability and management practices. Based on bioassay (and other) evidence, categories of persistent chemicals of most concern include brominated flame retardants, per- and polyfluorinated chemicals, pharmaceuticals and alkyl phenol ethoxylates. However, the emerging and more general literature on microplastic toxicity suggests that these particles might also be problematic in leachate. Various mitigation strategies have been identified, with most focussing on improving landfill design or leachate treatment, developing alternative disposal methods and reducing waste volume through recycling or using more sustainable materials. The success of these efforts will rely on policies and practices and their enforcement, which is seen as a particular challenge in developing nations and at the international (and transboundary) level. Artificial intelligence and machine learning afford a wide range of options for evaluating and reducing the risks associated with leachates and gaseous emissions from landfills, and various approaches tested or having potential are discussed. However, addressing the limitations in data collection, model accuracy, real-time monitoring and our understanding of environmental impacts will be critical for realising this potential.
Assuntos
Inteligência Artificial , Ecotoxicologia , Instalações de Eliminação de Resíduos , Humanos , Monitoramento Ambiental/métodos , Política Ambiental , Eliminação de Resíduos/métodos , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Plastics are ubiquitous in today's lifestyle, and their indiscriminate use has led to the accumulation of plastic waste in landfills and oceans. The waste accumulates and breaks into micro-particles that enter the food chain, causing severe threats to human health, wildlife, and the ecosystem. Environment-friendly and bio-based degradable materials offer a sustainable alternative to the vastly used synthetic materials. Here, a polylactic acid and carbon nanofiber-based membrane and a paper-based colorimetric sensor have been developed. The membrane had a surface area of 3.02 m2 g-1 and a pore size of 18.77 nm. The pores were evenly distributed with a pore volume of 0.0137 cm3 g-1. The membrane was evaluated in accordance with OECD guidelines and was found to be safe for tested aquatic and terrestrial models. The activated PLA-CNF membrane was further used as a bio-based electrode for the electrochemical detection of nitrates (NO3-) in water samples with a detection limit of 0.046 ppm and sensitivity of 1.69 × 10-4 A ppm-1 mm-2, whereas the developed paper-based colorimetric sensor had a detection limit of 156 ppm for NO3-. This study presents an environment-friendly, low-carbon footprint disposable material for sensing applications as a sustainable alternative to plastics.
Assuntos
Carbono , Colorimetria , Nanofibras , Nitratos , Papel , Poliésteres , Nanofibras/química , Colorimetria/métodos , Colorimetria/instrumentação , Nitratos/análise , Nitratos/química , Poliésteres/química , Carbono/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Limite de Detecção , Poluentes Químicos da Água/análise , Condutividade Elétrica , Membranas ArtificiaisRESUMO
This review article explores the challenges associated with landfill leachate resulting from the increasing disposal of municipal solid waste in landfills and open areas. The composition of landfill leachate includes antibiotics (0.001-100 µg), heavy metals (0.001-1.4 g/L), dissolved organic and inorganic components, and xenobiotics including polyaromatic hydrocarbons (10-25 µg/L). Conventional treatment methods, such as biological (microbial and phytoremediation) and physicochemical (electrochemical and membrane-based) techniques, are available but face limitations in terms of cost, accuracy, and environmental risks. To surmount these challenges, this study advocates for the integration of artificial intelligence (AI) and machine learning (ML) to strengthen treatment efficacy through predictive analytics and optimized operational parameters. It critically evaluates the risks posed by recalcitrant leachate components and appraises the performance of various treatment modalities, both independently and in tandem with biological and physicochemical processes. Notably, physicochemical treatments have demonstrated pollutant removal rates of up to 90% for various contaminants, while integrated biological approaches have achieved over 95% removal efficiency. However, the heterogeneous nature of solid waste composition further complicates treatment methodologies. Consequently, the integration of advanced ML algorithms such as Support Vector Regression, Artificial Neural Networks, and Genetic Algorithms is proposed to refine leachate treatment processes. This review provides valuable insights for different stakeholders specifically researchers, policymakers and practitioners, seeking to fortify waste disposal infrastructure and foster sustainable landfill leachate management practices. By leveraging AI and ML tools in conjunction with a nuanced understanding of leachate complexities, a promising pathway emerges towards effectively addressing this environmental challenge while mitigating potential adverse impacts.
Assuntos
Aprendizado de Máquina , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Eliminação de Resíduos/métodos , Biodegradação Ambiental , Resíduos Sólidos , Metais Pesados/análise , Inteligência ArtificialRESUMO
Carbon dots (CDs) have recently emerged in biomedical and agricultural domains, mainly for their probe applications in developing efficient sensors. However, the existing high-temperature approaches limit the industrial level scaling up to further translate them into different products by mass-scale fabrication of CDs. To address this, we have attempted to lower the synthesis temperature to 140 °C and synthesized different CDs using different organic acids and their combinations in a one-step approach (quantum yield 3.6% to 16.5%; average size 3 to 5 nm). Further, sensing applications of CDs have been explored in three different biological models, mainly Danio rerio (zebrafish) embryos, bacterial strains, and the Lactuca sativa (lettuce) plant. The 72 h exposure of D. rerio embryos to 0.5 and 1 mg/mL concentrations of CDs exhibited significant uptake without mortality, a 100% hatching rate, and nonsignificant alterations in heart rate. Bacterial bioimaging experiments revealed CD compatibility with Gram-positive (Bacillus subtilis) and Gram-negative (Serratia marcescens) strains without bactericidal effects. Furthermore, CDs demonstrated effective conduction and fluorescence within the vascular system of lettuce plants, indicating their potential as in vivo probes for plant tissues. The single-step low-temperature CD synthesis approach with efficient structural and optical properties enables the process as industrially viable to up-scale the technology readiness level. The bioimaging of CDs in different biological models indicates the possibility of developing a CD probe for diverse biosensing roles in diseases, metabolism, microbial contamination sensing, and more.
RESUMO
The present study investigated the concerted effort of Eisenia fetida and rhamnolipid JBR-425 in combination with a five-member bacterial consortium exhibiting elevated degradation levels of low and high molecular weight polycyclic aromatic hydrocarbons (PAH) from soil contaminated with Digboi crude oil. Application of bacterial consortium (G2) degraded 30-89% of selected PAH from the artificial soil after a 45-day post-exposure, in which chrysene showed the highest level of degradation with 89% and benzo(a)pyrene is the lowest with 30%, respectively. Moreover, an acute exposure study observed that earthworm biomass decreased, and mortality rates increased with increasing crude oil concentrations (0.25 to 2%). Earthworms with a 100% survival rate at 1% crude oil exposure suggest the tolerance potential and its mutual involvement in the bioremediation of crude oil with selected bacterial consortia. Bacterial consortium assisted with E. fetida (G3) showed 98% chrysene degradation with a slight change in benzo(a)pyrene degradation (35%) in crude oil spiked soil. Besides, the most dominant PAH in crude oil found in the current work, fluoranthene, undergoes 93% and 70% degradation in G3 and G5 groups, respectively. However, rhamnolipid JBR-425 coupled with the bacterial consortium (G5) has resulted in 97% degradation of chrysene and 33% for benzo(a)pyrene. Overall, bacterial consortium assisted with earthworm group has shown better degradation of selected PAH than bacterial consortium with biosurfactant. Catalase (CAT), glutathione reductase (GST) activity and MDA content was found to be reduced in earthworms after sub-lethal exposure, suggesting oxidative stress prevalence via reactive oxygen species (ROS). Hence, the findings of the present work suggest that the application of a bacterial consortium, along with earthworm E. fetida, has huge potential for field restoration of contaminated soil with PAH and ecosystem sustainability.
Assuntos
Oligoquetos , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Animais , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Oligoquetos/metabolismo , Crisenos , Ecossistema , Biodegradação Ambiental , Solo , Petróleo/metabolismo , Benzo(a)pireno/metabolismo , Poluentes do Solo/análise , Bactérias/metabolismoRESUMO
The rapidly growing electronic and plastic waste has become a global environmental concern. Developing advanced and environmentally safe agro-based materials is an emerging field with an enormous potential for applications in sensors and devices. Here, an agro-based material as membrane has been developed by incorporating tapioca starch and banana peel powder in polylactic acid, with uniform dispersibility and amorphous nature. The material was used for the development of electrochemical sensor for S-gene of SARS-CoV-2. Further, the membrane was used for the development of a non-invasive, colorimetric skin patch for the detection of glucose and a sensor for the assessment of fruit juice quality. Using OECD-recommended model systems, the developed membrane was found to be non-toxic towards aquatic and terrestrial non-target organisms. The developed conductive material opens new avenues in various electrochemical, analytical, and biological applications.
Assuntos
Técnicas Biossensoriais , COVID-19 , Manihot , Musa , Musa/química , Colorimetria , COVID-19/diagnóstico , SARS-CoV-2 , Amido/químicaRESUMO
The recent upsurge in the studies on micro/nano plastics and antimicrobial resistance genes has proven their deleterious effects on the environmental and human health. Till-date, there is a scarcity of studies on the interactions of these two factors and their combined influence. The interaction of microplastics has led to the formation of new plastics namely plastiglomerates, pyroplastics. and anthropoquinas. It has long been ignored that the occurrence of microplastics has become a breeding ground for the emergence of antimicrobial resistance genes. Evidently microplastics are also associated with the occurrence of other pollutants such as polyaromatic hydrocarbons and pesticides. The increased use of antibiotics (after Covid breakout) has further elevated the detrimental effects on human health. Therefore, this study highlights the relation of microplastics with antibiotic resistance generation. The factors such as uncontrolled use of antibiotics and negligent plastic consumption has been evaluated. Furthermore, the future research prospective was provided that can be helpful in correctly identifying the seriousness of the environmental occurrence of these pollutants.
Assuntos
COVID-19 , Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Microplásticos , Antibacterianos/farmacologia , Plásticos , Estudos Prospectivos , Farmacorresistência Bacteriana/genética , Poluição Ambiental , Poluentes Ambientais/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento AmbientalRESUMO
Bioelectrodes with low carbon footprint can provide an innovative solution to the surmounting levels of e-waste. Biodegradable polymers offer green and sustainable alternatives to synthetic materials. Here, a chitosan-carbon nanofiber (CNF) based membrane has been developed and functionalized for electrochemical sensing application. The surface characterization of the membrane revealed crystalline structure with uniform particle distribution, and surface area of 25.52 m2/g and pore volume of 0.0233 cm3/g. The membrane was functionalized to develop a bioelectrode for the detection of exogenous oxytocin in milk. Electrochemical impedance spectroscopy was employed to determine oxytocin in a linear concentration range of 10 to 105 ng/mL. The developed bioelectrode showed an LOD of 24.98 ± 11.37 pg/mL and sensitivity of 2.77 × 10-10 Ω / log ng mL-1/mm2 for oxytocin in milk samples with 90.85-113.34 percent recovery. The chitosan-CNF membrane is ecologically safe and opens new avenues for environment-friendly disposable materials for sensing applications.
Assuntos
Técnicas Biossensoriais , Quitosana , Nanofibras , Carbono/química , Quitosana/química , Ocitocina/química , Eletrodos , Técnicas Biossensoriais/métodosRESUMO
As the world is facing a Covid-19 pandemic, this virus teaches a lesson about the importance of on-site disinfection. On-site disinfection/sterilization with real-time monitoring of biomedical waste generated from the medical facilities is mandatory to prevent hospital-acquired infection (HAI). In this study, the life cycle assessment of two technologies, i.e., microwave (radiation-based) and autoclave (steam-based) were performed to summarize the inside-out evaluation of both technologies in terms of efficiency, efficacy, and cost-effectiveness. The results of disinfection efficacy indicated a log 10 reduction (almost 100%) in the vegetative load of microorganisms compared to the control, showing a similar level of disinfection efficacy of both strategies. Additionally, both technologies were compared on several parameters, and it was discovered that the autoclave uses more time and resources than the microwave. The total cost of an autoclave to the government is approximately double that of a microwave, while the operational cost of an autoclave is more than double that of a microwave. The findings from this study indicate that MACS may be used as a dry technique of biomedical disinfection, and its portability, tunability, and compactness make it a suitable alternative for biomedical disinfection and sterilization.
RESUMO
Food is an essential commodity for the survival of any form of life on earth. Yet generation of plethora of food waste has significantly elevated the global concern for food scarcity, human and environment deterioration. Also, increasing use of polymers derived from petroleum hydrocarbons has elevated the concerns towards the depletion of this non-renewable resource. In this review, the use of waste food for the production of bio-polymers and their associated challenges has been thoroughly investigated using scientometric analysis. Various categories of food waste including fruit, vegetable, and oily waste can be employed for the production of different biopolymers including polyhydroxyalkanoates, starch, cellulose, collagen and others. The advances in the production of biopolymers through chemical, microbial or enzymatic process that increases the acceptability of these biopolymers has been reviewed. The comprehensive compiled information may assist researchers for addressing and solving the issues pertaining to food wastage and fossil fuel depletion.