Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(8): 1609-1620, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043403

RESUMO

SARS-CoV-2 can infect wildlife, and SARS-CoV-2 variants of concern might expand into novel animal reservoirs, potentially by reverse zoonosis. White-tailed deer and mule deer of North America are the only deer species in which SARS-CoV-2 has been documented, raising the question of whether other reservoir species exist. We report cases of SARS-CoV-2 seropositivity in a fallow deer population located in Dublin, Ireland. Sampled deer were seronegative in 2020 when the Alpha variant was circulating in humans, 1 deer was seropositive for the Delta variant in 2021, and 12/21 (57%) sampled deer were seropositive for the Omicron variant in 2022, suggesting host tropism expansion as new variants emerged in humans. Omicron BA.1 was capable of infecting fallow deer lung type-2 pneumocytes and type-1-like pneumocytes or endothelial cells ex vivo. Ongoing surveillance to identify novel SARS-CoV-2 reservoirs is needed to prevent public health risks during human-animal interactions in periurban settings.


Assuntos
COVID-19 , Cervos , SARS-CoV-2 , Animais , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/veterinária , Humanos , Cervos/virologia , Irlanda/epidemiologia , Estudos Soroepidemiológicos , População Urbana , Reservatórios de Doenças/virologia , Reservatórios de Doenças/veterinária , Animais Selvagens/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Masculino
2.
J Gen Virol ; 105(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38995681

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with neurological sequelae including haemorrhage, thrombosis and ischaemic necrosis and encephalitis. However, the mechanism by which this occurs is unclear. Neurological disease associated with COVID-19 has been proposed to occur following direct infection of the central nervous system and/or indirectly by local or systemic immune activation. We evaluated the expression of angiotensin-converting enzyme-2 and transmembrane protease, serine 2 (TMPRSS2) in brain tissue from five healthy human donors and observed low-level expression of these proteins in cells morphologically consistent with astrocytes, neurons and choroidal ependymal cells within the frontal cortex and medulla oblongata. Primary human astrocytes, neurons, choroid plexus epithelial cells and pericytes supported productive SARS-CoV-2 infection with ancestral, Alpha, Delta and Omicron variants. Infected cells supported the full viral life cycle, releasing infectious virus particles. In contrast, primary brain microvascular endothelial cells and microglia were refractory to SARS-CoV-2 infection. These data support a model whereby SARS-CoV-2 can infect human brain cells, and the mechanism of viral entry warrants further investigation.


Assuntos
Enzima de Conversão de Angiotensina 2 , Astrócitos , COVID-19 , Plexo Corióideo , Células Epiteliais , Neurônios , Pericitos , SARS-CoV-2 , Serina Endopeptidases , Humanos , Pericitos/virologia , SARS-CoV-2/fisiologia , Astrócitos/virologia , Plexo Corióideo/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Neurônios/virologia , COVID-19/virologia , COVID-19/patologia , Células Epiteliais/virologia , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Células Cultivadas , Encéfalo/virologia , Encéfalo/patologia , Sistema Nervoso Central/virologia
3.
Heliyon ; 10(15): e34694, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39144942

RESUMO

Background: The inflammatory changes that underlie the heterogeneous presentations of COVID-19 remain incompletely understood. In this study we aimed to identify inflammatory profiles that precede the development of severe COVID-19, that could serve as targets for optimised delivery of immunomodulatory therapies and provide insights for the development of new therapies. Methods: We included individuals sampled <10 days from COVID-19 symptom onset, recruited from both inpatient and outpatient settings. We measured 61 biomarkers in plasma, including markers of innate immune and T cell activation, coagulation, tissue repair and lung injury. We used principal component analysis and hierarchical clustering to derive biomarker clusters, and ordinal logistic regression to explore associations between cluster membership and maximal disease severity, adjusting for known risk factors for severe COVID-19. Results: In 312 individuals, median (IQR) 7 (4-9) days from symptom onset, we found four clusters. Cluster 1 was characterised by low overall inflammation, cluster 2 was characterised by higher levels of growth factors and markers of endothelial activation (EGF, VEGF, PDGF, TGFα, PAI-1 and p-selectin). Cluster 3 and 4 both had higher overall inflammation. Cluster 4 had the highest levels of most markers including markers of innate immune activation (IL6, procalcitonin, CRP, TNFα), and coagulation (D-dimer, TPO), in contrast cluster 3 had the highest levels of alveolar epithelial injury markers (RAGE, ST2), but relative downregulation of growth factors and endothelial activation markers, suggesting a dysfunctional inflammatory pattern. In unadjusted and adjusted analysis, compared to cluster 1, cluster 3 had the highest odds of progressing to more severe disease (unadjusted OR (95%CI) 9.02 (4.53-17.96), adjusted OR (95%CI) 6.02 (2.70-13.39)). Conclusion: Early inflammatory profiles predicted subsequent maximal disease severity independent of risk factors for severe COVID-19. A cluster with downregulation of growth factors and endothelial activation markers, and early evidence of alveolar epithelial injury, had the highest risk of severe COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA