Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 8: 626000, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889583

RESUMO

Remaining a major healthcare concern with nearly 29 million confirmed cases worldwide at the time of writing, novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 920 thousand deaths since its outbreak in China, December 2019. First case of a person testing positive for SARS-CoV-2 infection within the territory of the Republic of Latvia was registered on 2nd of March 2020, 9 days prior to the pandemic declaration by WHO. Since then, more than 277,000 tests were carried out confirming a total of 1,464 cases of coronavirus disease 2019 (COVID-19) in the country as of 12th of September 2020. Rapidly reacting to the spread of the infection, an ongoing sequencing campaign was started mid-March in collaboration with the local testing laboratories, with an ultimate goal in sequencing as much local viral isolates as possible, resulting in first full-length SARS-CoV-2 isolate genome sequences from the Baltics region being made publicly available in early April. With 133 viral isolates representing ~9.1% of the total COVID-19 cases during the "first coronavirus wave" in the country (early March, 2020-mid-September, 2020) being completely sequenced as of today, here, we provide a first report on the genetic diversity of Latvian SARS-CoV-2 isolates.

2.
United European Gastroenterol J ; 3(2): 190-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25922680

RESUMO

BACKGROUND: Prevalence estimates for celiac disease (CD) depend on the method used. The role of deamidated gliadin peptide (DGP) and genetic testing in epidemiological studies and diagnostic settings of celiac disease (CD) has still to be established. OBJECTIVES: The objective of this article is to assess the prevalence of CD in Latvia by combining serological tests with DQ2.5/DQ8 testing. METHODS: A total of 1444 adults from a randomly selected cross-sectional general population sample were tested by ELISA for tTG IgA, DGP IgA and IgG antibodies (QUANTA Lite®, Inova Diagnostics Inc). Samples with tTG IgA ≥20U were tested for EMA IgA by indirect immunofluorescence assay, and all specimens with tTG IgA ≥15U were tested by QUANTA-Flash® chemiluminescent assays (CIA) (Inova Diagnostics Inc) for tTG IgA, DGP IgA and IgG. DQ2.5/8 was detected in individuals with any positive ELISA test and a subgroup of controls. RESULTS: Forty-three individuals (2.98%; 95% CI: 2.10-3.86%) tested positive by at least one ELISA test; 41.86% of the serology-positive individuals (any test above the cutoff) were DQ positive. Six individuals (0.42%; 95% CI: 0.09-0.75%) were triple ELISA positive, and DQ2.5 or DQ8 was positive in all; 0.35% (95% CI: 0.05-0.65%) were tTG IgA and EMA positive. Two tTG IgA-negative cases were both DGP IgG and IgA positive, both being DQ positive; including them in the "serology-positive" group would increase the prevalence to 0.49% (95% CI: 0.13-0.85%). CIA tests revealed 2 tTG IgA-positive and EMA-negative cases with a positive genotype. DQ2.5 or DQ8 genotype was positive in 28.6% of the serology-negative population. CONCLUSIONS: Estimates of the prevalence of CD in Latvia based on the serogenetic testing approach range from 0.35% to 0.49% depending on the criteria used. There is a rationale for combining serological tests and DQ2.5/8 genotyping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA