Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 568
Filtrar
1.
Circ Res ; 135(7): 758-773, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39140165

RESUMO

BACKGROUND: Cardiac hypertrophy is characterized by remodeling of the myocardium, which involves alterations in the ECM (extracellular matrix) and cardiomyocyte structure. These alterations critically contribute to impaired contractility and relaxation, ultimately leading to heart failure. Emerging evidence implicates that extracellular signaling molecules are critically involved in the pathogenesis of cardiac hypertrophy and remodeling. The immunophilin CyPA (cyclophilin A) has been identified as a potential culprit. In this study, we aimed to unravel the interplay between eCyPA (extracellular CyPA) and myocardial dysfunction and evaluate the therapeutic potential of inhibiting its extracellular accumulation to improve heart function. METHODS: Employing a multidisciplinary approach encompassing in silico, in vitro, in vivo, and ex vivo experiments we studied a mouse model of cardiac hypertrophy and human heart specimen to decipher the interaction of CyPA and the cardiac microenvironment in highly relevant pre-/clinical settings. Myocardial expression of CyPA (immunohistology) and the inflammatory transcriptome (NanoString) was analyzed in human cardiac tissue derived from patients with nonischemic, noninflammatory congestive heart failure (n=187). These analyses were paralleled by a mouse model of Ang (angiotensin) II-induced heart failure, which was assessed by functional (echocardiography), structural (immunohistology, atomic force microscopy), and biomolecular (Raman spectroscopy) analyses. The effect of inhibiting eCyPA in the cardiac microenvironment was evaluated using a newly developed neutralizing anti-eCyPA monoclonal antibody. RESULTS: We observed a significant accumulation of eCyPA in both human and murine-failing hearts. Importantly, higher eCyPA expression was associated with poor clinical outcomes in patients (P=0.043) and contractile dysfunction in mice (Pearson correlation coefficient, -0.73). Further, myocardial expression of eCyPA was critically associated with an increase in myocardial hypertrophy, inflammation, fibrosis, stiffness, and cardiac dysfunction in vivo. Antibody-based inhibition of eCyPA prevented (Ang II)-induced myocardial remodeling and dysfunction in mice. CONCLUSIONS: Our study provides strong evidence of the pathogenic role of eCyPA in remodeling, myocardial stiffening, and dysfunction in heart failure. The findings suggest that antibody-based inhibition of eCyPA may offer a novel therapeutic strategy for nonischemic heart failure. Further research is needed to evaluate the translational potential of these interventions in human patients with cardiac hypertrophy.


Assuntos
Ciclofilina A , Insuficiência Cardíaca , Animais , Feminino , Humanos , Masculino , Camundongos , Microambiente Celular , Ciclofilina A/antagonistas & inibidores , Modelos Animais de Doenças , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
2.
Eur J Immunol ; : e2451145, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39094122

RESUMO

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection can lead to life-threatening clinical manifestations. Patients with cardiovascular disease (CVD) are at higher risk for severe courses of COVID-19. So far, however, there are hardly any strategies for predicting the course of SARS-CoV-2 infection in CVD patients at hospital admission. Thus, we investigated whether this prediction is achievable by prospectively analysing the blood immunophenotype of 94 nonvaccinated participants, including uninfected and acutely SARS-CoV-2-infected CVD patients and healthy donors, using a 36-colour spectral flow cytometry panel. Unsupervised data analysis revealed little differences between healthy donors and CVD patients, whereas the distribution of the cell populations changed dramatically in SARS-CoV-2-infected CVD patients. The latter had more mature NK cells, activated monocyte subsets, central memory CD4+ T cells, and plasmablasts but fewer dendritic cells, CD16+ monocytes, innate lymphoid cells, and CD8+ T-cell subsets. Moreover, we identified an immune signature characterised by CD161+ T cells, intermediate effector CD8+ T cells, and natural killer T (NKT) cells that is predictive for CVD patients with a severe course of COVID-19. Thus, intensified immunophenotype analyses can help identify patients at risk of severe COVID-19 at hospital admission, improving clinical outcomes through specific treatment.

3.
Circ Res ; 132(7): e96-e113, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36891903

RESUMO

BACKGROUND: Platelets can infiltrate ischemic myocardium and are increasingly recognized as critical regulators of inflammatory processes during myocardial ischemia and reperfusion (I/R). Platelets contain a broad repertoire of microRNAs (miRNAs), which, under certain conditions such as myocardial ischemia, may be transferred to surrounding cells or released into the microenvironment. Recent studies could demonstrate that platelets contribute substantially to the circulating miRNA pool holding the potential for so far undiscovered regulatory functions. The present study aimed to determine the role of platelet-derived miRNAs in myocardial injury and repair following myocardial I/R. METHODS: In vivo model of myocardial I/R, multimodal in vivo and ex vivo imaging approaches (light-sheet fluorescence microscopy, positron emission tomography and magnetic resonance imaging, speckle-tracking echocardiography) of myocardial inflammation and remodeling, and next-generation deep sequencing analysis of platelet miRNA expression. RESULTS: In mice with a megakaryocyte/platelet-specific knockout of pre-miRNA processing ribonuclease Dicer, the present study discloses a key role of platelet-derived miRNAs in the tightly regulated cellular processes orchestrating left ventricular remodeling after myocardial I/R following transient left coronary artery ligation. Disruption of the miRNA processing machinery in platelets by deletion of Dicer resulted in increased myocardial inflammation, impaired angiogenesis, and accelerated development of cardiac fibrosis, culminating in an increased infarct size by d7 that persisted through d28 of myocardial I/R. Worsened cardiac remodeling after myocardial infarction in mice with a platelet-specific Dicer deletion resulted in an increased fibrotic scar formation and distinguishably increased perfusion defect of the apical and anterolateral wall at day 28 post-myocardial infarction. Altogether, these observations culminated in an impaired left ventricular function and hampered long-term cardiac recovery after experimental myocardial infarction and reperfusion therapy. Treatment with the P2Y12 (P2Y purinoceptor 12) antagonist ticagrelor completely reversed increased myocardial damage and adverse cardiac remodeling observed in DicerPf4∆/Pf4∆ mice. CONCLUSIONS: The present study discloses a critical role of platelet-derived miRNA in myocardial inflammation and structural remodeling processes following myocardial I/R.


Assuntos
Doença da Artéria Coronariana , MicroRNAs , Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Plaquetas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Remodelação Ventricular , Traumatismo por Reperfusão Miocárdica/metabolismo , Isquemia Miocárdica/metabolismo , Infarto do Miocárdio/patologia , Doença da Artéria Coronariana/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças
4.
Arterioscler Thromb Vasc Biol ; 44(9): 2118-2135, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38989580

RESUMO

BACKGROUND: Aortic stenosis (AS) is driven by progressive inflammatory and fibrocalcific processes regulated by circulating inflammatory and valve resident endothelial and interstitial cells. The impact of platelets, platelet-derived mediators, and platelet-monocyte interactions on the acceleration of local valvular inflammation and mineralization is presently unknown. METHODS: We prospectively enrolled 475 consecutive patients with severe symptomatic AS undergoing aortic valve replacement. Clinical workup included repetitive echocardiography, analysis of platelets, monocytes, chemokine profiling, aortic valve tissue samples for immunohistochemistry, and gene expression analysis. RESULTS: The patients were classified as fast-progressive AS by the median ∆Vmax of 0.45 m/s per year determined by echocardiography. Immunohistological aortic valve analysis revealed enhanced cellularity in fast-progressive AS (slow- versus fast-progressive AS; median [interquartile range], 247 [142.3-504] versus 717.5 [360.5-1234]; P<0.001) with less calcification (calcification area, mm2: 33.74 [27.82-41.86] versus 20.54 [13.52-33.41]; P<0.001). MIF (macrophage migration inhibitory factor)-associated gene expression was significantly enhanced in fast-progressive AS accompanied by significantly elevated MIF plasma levels (mean±SEM; 6877±379.1 versus 9959±749.1; P<0.001), increased platelet activation, and decreased intracellular MIF expression indicating enhanced MIF release upon platelet activation (CD62P, %: median [interquartile range], 16.8 [11.58-23.8] versus 20.55 [12.48-32.28], P=0.005; MIF, %: 4.85 [1.48-9.75] versus 2.3 [0.78-5.9], P<0.001). Regression analysis confirmed that MIF-associated biomarkers are strongly associated with an accelerated course of AS. CONCLUSIONS: Our findings suggest a key role for platelet-derived MIF and its interplay with circulating and valve resident monocytes/macrophages in local and systemic thromboinflammation during accelerated AS. MIF-based biomarkers predict an accelerated course of AS and represent a novel pharmacological target to attenuate progression of AS.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Biomarcadores , Progressão da Doença , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos , Tromboinflamação , Humanos , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/sangue , Fatores Inibidores da Migração de Macrófagos/sangue , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Masculino , Feminino , Idoso , Estudos Prospectivos , Valva Aórtica/patologia , Valva Aórtica/metabolismo , Valva Aórtica/diagnóstico por imagem , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/sangue , Biomarcadores/sangue , Tromboinflamação/genética , Tromboinflamação/patologia , Tromboinflamação/metabolismo , Plaquetas/metabolismo , Plaquetas/patologia , Idoso de 80 Anos ou mais , Monócitos/metabolismo , Pessoa de Meia-Idade , Implante de Prótese de Valva Cardíaca , Fatores de Tempo , Índice de Gravidade de Doença , Calcinose/patologia , Calcinose/genética , Calcinose/sangue , Calcinose/metabolismo
5.
Biochem Biophys Res Commun ; 701: 149629, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330730

RESUMO

Accumulation of free heme B in the plasma can be the result of severe hemolytic events, when the scavenger system for free hemoglobin and heme B is overwhelmed. Free heme B can be oxidized into toxic hemin, which has been proven to activate platelet degranulation and aggregation and promote thrombosis. In the present study we analyzed the effect of hemin on the activation-mediated lysosomal degranulation and CD63 surface expression on platelets using classic flow cytometry and fluorescence microscopy techniques. Classical platelet activators were used as control to distinguish the novel effects of hemin from known activation pathways. CD63 is a tetraspanin protein, also known as lysosomal-associated membrane protein 3 or LAMP-3. In resting platelets CD63 is located within the membrane of delta granules and lysosomes of platelet, from where it is integrated into the platelet outer membrane upon stimulation. We were able to show that hemin like the endogenous platelet activators ADP, collagen or thrombin does provoke CD63 re-localization. Interestingly, only hemin-induced CD63 externalization is dependent on the subtilisin-like pro-protein convertase furin as shown by inhibitor experiments. Furthermore, we were able to demonstrate that hemin induces lysosome secretion, a source of the hemin-mediated CD63 presentation. Again, only the hemin-induced lysosome degranulation is furin dependent. In summary we have shown that the pro-protein convertase furin plays an important role in hemin-mediated lysosomal degranulation and CD63 externalization.


Assuntos
Furina , Hemina , Glicoproteínas da Membrana de Plaquetas , Tetraspanina 30 , Antígenos CD/metabolismo , Plaquetas/metabolismo , Furina/metabolismo , Hemina/metabolismo , Proteínas de Membrana Lisossomal , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Tetraspanina 30/metabolismo , Humanos
6.
Blood ; 139(11): 1722-1742, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34905596

RESUMO

Platelet ACKR3/CXCR7 surface expression is enhanced and influences prognosis in coronary artery disease (CAD) patients, who exhibit a distinct atherothrombotic platelet lipidome. Current investigation validates the potential of ACKR3/CXCR7 in regulating thromboinflammatory response through its impact on the platelet lipidome. CAD patients with enhanced platelet ACKR3/CXCR7 expression exhibited reduced aggregation. Pharmacological CXCR7 agonist (VUF11207) significantly reduced prothrombotic platelet response in blood from acute coronary syndrome patients ex vivo. CXCR7 agonist administration reduced thrombotic functions and thromboinflammatory plateletleukocyte interactions post-myocardial infarction and arterial injury in vivo. ACKR3/CXCR7 ligation did not affect surface availability of surface receptors, coagulation profile, bleeding time, plasma-dependent thrombin generation (thrombinoscopy), or clot formation (thromboelastography) but counteracted activation-induced phosphatidylserine exposure and procoagulant platelet-assisted thrombin generation. Targeted (micro-UHPLC-ESI-QTrap-MS/MS) and untargeted (UHPLCESI-QTOF-MS/MS) lipidomics analysis revealed that ACKR3/CXCR7 ligation favored generation of antithrombotic lipids (dihomo-γ-linolenic acid [DGLA], 12-hydroxyeicosatrienoic acid [12-HETrE]) over cyclooxygenase-1 (COX-1) or 12-lipoxygenase (12-LOX) metabolized prothrombotic and phospholipase-derived atherogenic lipids in healthy subjects and CAD patients, contrary to antiplatelet therapy. Through 12-HETrE, ACKR3/CXCR7 ligation coordinated with Gαs-coupled prostacyclin receptor to trigger cyclic adenosine monophosphate/protein kinase A-mediated platelet inhibition. ACKR3/CXCR7 ligation reduced generation of lipid agonists and lipid signaling intermediates, which affected calcium mobilization, intracellular signaling, and consequently platelet interaction with physiological matrices and thromboinflammatory secretome. This emphasized its functional dichotomy from prothrombotic CXCR4. Moreover, CXCR7 agonist regulated heparin-induced thrombocytopenia-sera/immunoglobulin G-triggered platelet and neutrophil activation, heparin-induced platelet aggregation, generation of thromboinflammatory lipids, platelet-neutrophil aggregate formation, and thromboinflammatory secretion ex vivo. Therefore, ACKR3/CXCR7 may offer a novel therapeutic strategy in acute/chronic thromboinflammation exaggerated cardiovascular pathologies and CAD.


Assuntos
Receptores CXCR/metabolismo , Trombose , Plaquetas/metabolismo , Humanos , Inflamação/metabolismo , Lipidômica , Lipídeos , Espectrometria de Massas em Tandem , Trombina/metabolismo , Tromboinflamação , Trombose/metabolismo
7.
Cardiovasc Diabetol ; 23(1): 272, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048982

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is a cluster of medical conditions and risk factors correlating with insulin resistance that increase the risk of developing cardiometabolic health problems. The specific criteria for diagnosing MetS vary among different medical organizations but are typically based on the evaluation of abdominal obesity, high blood pressure, hyperglycemia, and dyslipidemia. A unique, quantitative and independent estimation of the risk of MetS based only on quantitative biomarkers is highly desirable for the comparison between patients and to study the individual progression of the disease in a quantitative manner. METHODS: We used NMR-based metabolomics on a large cohort of donors (n = 21,323; 37.5% female) to investigate the diagnostic value of serum or serum combined with urine to estimate the MetS risk. Specifically, we have determined 41 circulating metabolites and 112 lipoprotein classes and subclasses in serum samples and this information has been integrated with metabolic profiles extracted from urine samples. RESULTS: We have developed MetSCORE, a metabolic model of MetS that combines serum lipoprotein and metabolite information. MetSCORE discriminate patients with MetS (independently identified using the WHO criterium) from general population, with an AUROC of 0.94 (95% CI 0.920-0.952, p < 0.001). MetSCORE is also able to discriminate the intermediate phenotypes, identifying the early risk of MetS in a quantitative way and ranking individuals according to their risk of undergoing MetS (for general population) or according to the severity of the syndrome (for MetS patients). CONCLUSIONS: We believe that MetSCORE may be an insightful tool for early intervention and lifestyle modifications, potentially preventing the aggravation of metabolic syndrome.


Assuntos
Biomarcadores , Espectroscopia de Ressonância Magnética , Síndrome Metabólica , Metabolômica , Valor Preditivo dos Testes , Humanos , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/sangue , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/urina , Feminino , Masculino , Biomarcadores/sangue , Biomarcadores/urina , Pessoa de Meia-Idade , Medição de Risco , Adulto , Idoso , Lipoproteínas/sangue , Prognóstico , Fatores de Risco , Fatores de Risco Cardiometabólico , Adulto Jovem
8.
Catheter Cardiovasc Interv ; 103(1): 137-146, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890011

RESUMO

BACKGROUND: The development of the PASCAL transcatheter valve repair system for treating mitral regurgitation (MR) greatly extends therapeutic options. AIMS: To assess the safety, efficacy, and time efficiency of the PASCAL system in transcatheter edge-to-edge repair (TEER) under conscious sedation (CS). METHODS: This is a retrospective, two-center, German registry study consisting of 211 patients who underwent TEER using the PASCAL system under CS. The endpoints were to assess (1) technical, device, and procedural success as per Mitral Valve Academic Research Consortium (MVARC), (2) conversion rate to general anesthesia (GA), (3) hospital length of stay (LoS), (4) New York Heart Association (NYHA) class, and (5) MR compared to baseline at 30-day. RESULTS: A total of 211 patients with a mean age of 78.4 ± 8.9 years, with 51.4% being female and 86.7% belonging to NYHA functional class III/IV and EuroSCORE II 6.3 ± 4.9%, were enrolled. Procedural success attained was 96.9%, and six patients (2.8%) required conversion from CS to GA. At 30 days follow-up, a significant improvement in MR was found in 96 patients (54.2%) patients with 0/1 grade MR and 45 patients (29.5%) were in NYHA functional class III + IV. Moreover, TEER under CS has a short hospital LoS (6.71 ± 5.29 days) and intensive care unit LoS (1.34 ± 3.49 days) with a 2.8% mortality rate. CONCLUSIONS: Performing TEER with the PASCAL system under CS resulted in appreciable (96.9%) procedural success with low mortality and is a safe and promising alternative to GA with positive clinical outcomes.


Assuntos
Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Mitral , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Sedação Consciente/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/cirurgia , Cateterismo Cardíaco
9.
Blood ; 137(8): 1061-1071, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33512415

RESUMO

The pathophysiology of COVID-19-associated thrombosis seems to be multifactorial. We hypothesized that COVID-19 is accompanied by procoagulant platelets with subsequent alteration of the coagulation system. We investigated depolarization of mitochondrial inner transmembrane potential (ΔΨm), cytosolic calcium (Ca2+) concentration, and phosphatidylserine (PS) externalization. Platelets from COVID-19 patients in the intensive care unit (ICU; n = 21) showed higher ΔΨm depolarization, cytosolic Ca2+, and PS externalization compared with healthy controls (n = 18) and non-ICU COVID-19 patients (n = 4). Moreover, significant higher cytosolic Ca2+ and PS were observed compared with a septic ICU control group (ICU control; n = 5). In the ICU control group, cytosolic Ca2+ and PS externalization were comparable with healthy controls, with an increase in ΔΨm depolarization. Sera from COVID-19 patients in the ICU induced a significant increase in apoptosis markers (ΔΨm depolarization, cytosolic Ca2+, and PS externalization) compared with healthy volunteers and septic ICU controls. Interestingly, immunoglobulin G fractions from COVID-19 patients induced an Fcγ receptor IIA-dependent platelet apoptosis (ΔΨm depolarization, cytosolic Ca2+, and PS externalization). Enhanced PS externalization in platelets from COVID-19 patients in the ICU was associated with increased sequential organ failure assessment score (r = 0.5635) and D-dimer (r = 0.4473). Most importantly, patients with thrombosis had significantly higher PS externalization compared with those without. The strong correlations between markers for apoptosic and procoagulant platelets and D-dimer levels, as well as the incidence of thrombosis, may indicate that antibody-mediated procoagulant platelets potentially contributes to sustained increased thromboembolic risk in ICU COVID-19 patients.


Assuntos
Apoptose , Plaquetas/patologia , COVID-19/patologia , Imunoglobulina G/metabolismo , Adulto , Idoso , Coagulação Sanguínea , Plaquetas/metabolismo , COVID-19/sangue , COVID-19/complicações , COVID-19/metabolismo , Cálcio/metabolismo , Estudos de Coortes , Feminino , Humanos , Masculino , Potencial da Membrana Mitocondrial , Pessoa de Meia-Idade , Fosfatidilserinas/metabolismo , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Trombose/sangue , Trombose/etiologia , Trombose/metabolismo , Trombose/patologia
10.
Blood ; 138(14): 1269-1277, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34280256

RESUMO

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a severe adverse effect of ChAdOx1 nCoV-19 COVID-19 vaccine (Vaxzevria) and Janssen Ad26.COV2.S COVID-19 vaccine, and it is associated with unusual thrombosis. VITT is caused by anti-platelet factor 4 (PF4) antibodies activating platelets through their FcγRIIa receptors. Antibodies that activate platelets through FcγRIIa receptors have also been identified in patients with COVID-19. These findings raise concern that vaccination-induced antibodies against anti-SARS-CoV-2 spike protein cause thrombosis by cross-reacting with PF4. Immunogenic epitopes of PF4 and SARS-CoV-2 spike protein were compared using in silico prediction tools and 3D modeling. The SARS-CoV-2 spike protein and PF4 share at least 1 similar epitope. Reactivity of purified anti-PF4 antibodies from patients with VITT was tested against recombinant SARS-CoV-2 spike protein. However, none of the affinity-purified anti-PF4 antibodies from 14 patients with VITT cross-reacted with SARS-CoV-2 spike protein. Sera from 222 polymerase chain reaction-confirmed patients with COVID-19 from 5 European centers were tested by PF4-heparin enzyme-linked immunosorbent assays and PF4-dependent platelet activation assays. We found anti-PF4 antibodies in sera from 19 (8.6%) of 222 patients with COVID-19. However, only 4 showed weak to moderate platelet activation in the presence of PF4, and none of those patients developed thrombotic complications. Among 10 (4.5%) of 222 patients who had COVID-19 with thrombosis, none showed PF4-dependent platelet-activating antibodies. In conclusion, antibodies against PF4 induced by vaccination do not cross-react with the SARS-CoV-2 spike protein, indicating that the intended vaccine-induced immune response against SARS-CoV-2 spike protein is not the trigger of VITT. PF4-reactive antibodies found in patients with COVID-19 in this study were not associated with thrombotic complications.


Assuntos
Anticorpos/efeitos adversos , Vacinas contra COVID-19/efeitos adversos , Reações Cruzadas/imunologia , Fator Plaquetário 4/imunologia , Púrpura Trombocitopênica Idiopática/etiologia , Púrpura Trombocitopênica Idiopática/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Plaquetas/imunologia , COVID-19/imunologia , Estudos de Coortes , Epitopos/imunologia , Feminino , Heparina/metabolismo , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Domínios Proteicos , Púrpura Trombocitopênica Idiopática/sangue , Glicoproteína da Espícula de Coronavírus/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA