Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
2.
Inorg Chem ; 46(10): 4138-44, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-17441715

RESUMO

The compounds M2Ba2Sn6 (M = Yb, Ca) have been synthesized by solid-state reactions in welded Ta tubes at high temperature. Their structures were determined by single-crystal X-ray diffraction studies to be orthorhombic; space group Cmca (No. 64); Z = 8; a = 15.871(3), 15.912 (3) A; b = 9.387(2), 9.497(2) A; c = 17.212(3), 17.184(3) A; and V = 2564.3(9), 2597.0(9) A3, respectively. These contain infinite tin chains along constructed from butterflylike 3-bonded Sn tetramers interconnected by pairs of 2-bonded Sn. The chains are further interconnected into corrugated layers by somewhat longer Sn-Sn bonds along c. The compounds with the chains alone would be Zintl phases, but the interchain bonding makes them formally one-electron rich per formula unit. The electronic structures calculated by extended Hückel and TB-LMTO-ASA methods indicate that these compounds are metallic but with a deep pseudogap at the Fermi level. States that bind the extra electrons lie just below EF and involve important Yb(Ca)-Sn contributions. The origin of metallic Zintl phases is briefly discussed.

3.
Inorg Chem ; 46(17): 6864-70, 2007 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-17658872

RESUMO

The ternary phase Eu3Bi(Sn1-xBix)4 ( approximately 0 < x < approximately 0.15) has been synthesized by solid-state methods at high temperature. The crystal structure of the limiting Eu3Bi(Sn3.39Bi0.61(3)) has been determined by single-crystal X-ray analysis to be isopointal with an inverse-Cr5B3-type structure [space group I4/mcm, Z = 4, a = 8.826(1) A, c = 12.564(3) A, and V = 978.6(3) A3]. The structure contains slabs of three-bonded Sn/Bi atoms as puckered eight- and four-membered rings interlinked at all vertices, and these are separated by planar layers of individual Eu and Bi atoms. In the normal (stuffed) Cr5B3-type analogue Eu5Sn3Hx, these two units are replaced by a more highly puckered network of Eu cations around isolated Sn atoms and planar layers of isolated Eu atoms and Sn dimers, respectively. Band structures of limiting models of the phase calculated by TB-LMTO-ASA methods show a metallic character and indicate that the mixed Sn/Bi occupancy in the slabs in this structure for x > 0 probably originates with the electronic advantages of the pseudogap that would occur at the electron count of the ideal Zintl phase Eu3Bi(Sn3Bi). The stability of a competing phase reduces this limit to Eu3Bi(Sn3.4Bi0.6).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA