Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Food Microbiol ; 113: 104260, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37098420

RESUMO

Lettuce is associated with seasonal outbreaks of Shiga toxin-producing Escherichia coli (STEC) infections. Little is known about how various biotic and abiotic factors affect the lettuce microbiome, which in turn impacts STEC colonization. We characterized the lettuce phyllosphere and surface soil bacterial, fungal, and oomycete communities at harvest in late-spring and -fall in California using metagenomics. Harvest season and field type, but not cultivar, significantly influenced the microbiome composition of leaves and surface soil near plants. Phyllosphere and soil microbiome compositions were correlated with specific weather factors. The relative abundance of Enterobacteriaceae, but not E. coli, was enriched on leaves (5.2%) compared to soil (0.4%) and correlated positively with minimum air temperature and wind speed. Co-occurrence networks revealed seasonal trends in fungi-bacteria interactions on leaves. These associations represented 39%-44% of the correlations between species. All significant E. coli co-occurrences with fungi were positive, while all negative associations were with bacteria. A large proportion of the leaf bacterial species was shared with those in soil, indicating microbiome transmission from the soil surface to the canopy. Our findings provide new insight into factors that shape lettuce microbial communities and the microbial context of foodborne pathogen immigration events in the lettuce phyllosphere.


Assuntos
Microbiota , Escherichia coli Shiga Toxigênica , Lactuca/microbiologia , Solo , Tempo (Meteorologia) , Bactérias/genética , Fungos/genética , Folhas de Planta/microbiologia
2.
Microorganisms ; 12(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38792677

RESUMO

Cyclospora cayetanensis is a foodborne parasite that causes cyclosporiasis, an enteric illness in humans. Genotyping methods are used to genetically discriminate between specimens from cyclosporiasis cases and can complement source attribution investigations if the method is sufficiently sensitive for application to food items. A very sensitive targeted amplicon sequencing (TAS) assay for genotyping C. cayetanensis encompassing 52 loci was recently designed. In this study, we analyzed 66 genetically diverse clinical specimens to assess the change in phylogenetic resolution between the TAS assay and a currently employed eight-marker scheme. Of the 52 markers, ≥50 were successfully haplotyped for all specimens, and these results were used to generate a hierarchical cluster dendrogram. Using a previously described statistical approach to dissect hierarchical trees, the 66 specimens resolved into 24 and 27 distinct genetic clusters for the TAS and an 8-loci scheme, respectively. Although the specimen composition of 15 clusters was identical, there were substantial differences between the two dendrograms, highlighting the importance of both inclusion of additional genome coverage and choice of loci to target for genotyping. To evaluate the ability to genetically link contaminated food samples with clinical specimens, C. cayetanensis was genotyped from DNA extracted from raspberries inoculated with fecal specimens. The contaminated raspberry samples were assigned to clusters with the corresponding clinical specimen, demonstrating the utility of the TAS assay for traceback efforts.

3.
Mycologia ; 116(4): 536-557, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727560

RESUMO

The ascomycete fungus Aspergillus flavus infects and contaminates corn, peanuts, cottonseed, and tree nuts with toxic and carcinogenic aflatoxins. Subdivision between soil and host plant populations suggests that certain A. flavus strains are specialized to infect peanut, cotton, and corn despite having a broad host range. In this study, the ability of strains isolated from corn and/or soil in 11 Louisiana fields to produce conidia (field inoculum and male gamete) and sclerotia (resting bodies and female gamete) was assessed and compared with genotypic single-nucleotide polymorphism (SNP) differences between whole genomes. Corn strains produced upward of 47× more conidia than strains restricted to soil. Conversely, corn strains produced as much as 3000× fewer sclerotia than soil strains. Aspergillus flavus strains, typified by sclerotium diameter (small S-strains, <400 µm; large L-strains, >400 µm), belonged to separate clades. Several strains produced a mixture (M) of S and L sclerotia, and an intermediate number of conidia and sclerotia, compared with typical S-strains (minimal conidia, copious sclerotia) and L-strains (copious conidia, minimal sclerotia). They also belonged to a unique phylogenetic mixed (M) clade. Migration from soil to corn positively correlated with conidium production and negatively correlated with sclerotium production. Genetic differences correlated with differences in conidium and sclerotium production. Opposite skews in female (sclerotia) or male (conidia) gametic production by soil or corn strains, respectively, resulted in reduced effective breeding population sizes when comparing male:female gamete ratio with mating type distribution. Combining both soil and corn populations increased the effective breeding population, presumably due to contribution of male gametes from corn, which fertilize sclerotia on the soil surface. Incongruencies between aflatoxin clusters, strain morphotype designation, and whole genome phylogenies suggest a history of sexual reproduction within this Louisiana population, demonstrating the importance of conidium production, as infectious propagules and as fertilizers of the A. flavus soil population.


Assuntos
Aspergillus flavus , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Microbiologia do Solo , Esporos Fúngicos , Zea mays , Zea mays/microbiologia , Aspergillus flavus/genética , Aspergillus flavus/classificação , Aspergillus flavus/metabolismo , Doenças das Plantas/microbiologia , Louisiana , Filogenia , Genótipo
4.
Microbiol Resour Announc ; 9(14)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32241865

RESUMO

Here, we report the draft genome sequences of Alternaria alternata, isolated from seedless grapes, and Alternaria arborescens and Alternaria atra, isolated from Red Delicious apples, all from the Washington, DC, area.

5.
Microbiol Resour Announc ; 9(38)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943568

RESUMO

Aspergillus flavus is a common saprophyte and opportunistic fungal pathogen that infects plants, animals, and humans. It also produces numerous toxic and nontoxic secondary metabolites. Here, we report the draft genome sequences of 20 A. flavus isolates, belonging to 16 vegetative compatibility groups, from Louisiana corn kernels and cornfield soils.

6.
Microbiol Resour Announc ; 9(39)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32972949

RESUMO

Escherichia coli strains present a vast genomic diversity. We report the draft genome sequences of 1,000 isolates from the E. coli Reference Center at Penn State University. These strains were originally isolated from multiple animal and environmental sources over the past 50 years.

7.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975817

RESUMO

In this report, we announce the sequences of six genomes of Fusarium proliferatum (isolates MOD1-FUNGI8, -12, -13, -14, -15, and -19), four genomes of Fusarium oxysporum (MOD1-FUNGI9, -10, -11, and -16), and two genomes of the Fusarium incarnatum-Fusarium equiseti species complex (MOD1-FUNGI17 and MOD1-FUNGI18) isolated from moldy peanuts from the Washington, DC, area.

8.
Genome Announc ; 6(18)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724828

RESUMO

We report here the genome sequences of 55 strains belonging to the genus Escherichia from multiple animal and environmental sources. These strains include representatives of Escherichia albertii, Escherichia fergusonii, and six additional genetically distinct lineages of Escherichia spp., one of which is newly discovered and is being reported for the first time here.

9.
Genome Announc ; 5(50)2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242221

RESUMO

Pathogenic and nonpathogenic Escherichia coli strains present a vast genomic diversity. We report the genome sequences of 2,244 E. coli isolates from multiple animal and environmental sources. Their phylogenetic relationships and potential risk to human health were examined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA