Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Opt Express ; 31(8): 12717-12724, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157427

RESUMO

We demonstrate ultra-broadband spectral combining of ultrashort pulses from Yb-doped fiber amplifiers, with coherently spectrally synthesized pulse shaping, to achieve tens-of-fs pulses. This method can fully compensate for gain narrowing and high order dispersion over broad bandwidth. We produce 42fs pulses by spectrally synthesizing three chirped-pulse fiber amplifiers and two programmable pulse shapers across an 80nm overall bandwidth. To the best of our knowledge, this is the shortest pulse duration achieved from a spectrally combined fiber system at one-micron wavelength. This work provides a path toward high-energy, tens-of-fs fiber chirped-pulse amplification systems.

2.
Int J Drug Policy ; 126: 104362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484530

RESUMO

BACKGROUND: Pandemic income support payments have been speculatively linked to an increased incidence of illicit drug poisoning (overdose). However, existing research is limited. METHODS: Collating Canadian Emergency Response Benefit (CERB) payment data with data on paramedic attended overdose and illicit drug toxicity deaths for the province of British Columbia at the Local Health Area (LHA) level, we conducted a correlation analysis to compare overdose rates before, during and after active CERB disbursement. RESULTS: There were 20,014,270 CERB-entitled weeks identified among residents of British Columbia for the duration of the pandemic response program. Approximately 52 % of all CERB entitled weeks in the study were among females and approximately 48 % were among males. Paramedic-attended overdoses increased uniformly across the pre-CERB, CERB and post-CERB periods, while illicit drug toxicity deaths sharply increased and then remained high over the period of the study. Correlation analyses between overdose and CERB-entitled weeks approached zero for both paramedic-attended overdoses and illicit drug toxicity deaths. CONCLUSIONS: These findings suggest that attributing the pandemic increase in overdose to income support payments is unfounded. Sustained levels of unacceptably high non-fatal and fatal drug poisonings that further increased at the start of the pandemic are reflective of complex pre-existing and pandemic-driven changes to overdose risk.


Assuntos
COVID-19 , Overdose de Drogas , Humanos , Colúmbia Britânica/epidemiologia , Overdose de Drogas/epidemiologia , Masculino , Feminino , COVID-19/epidemiologia , Drogas Ilícitas/intoxicação , Drogas Ilícitas/economia , Adulto
3.
Appl Sci (Basel) ; 13(8)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38240007

RESUMO

The general concept of radiation therapy used in conventional cancer treatment is to increase the therapeutic index by creating a physical dose differential between tumors and normal tissues through precision dose targeting, image guidance, and radiation beams that deliver a radiation dose with high conformality, e.g., protons and ions. However, the treatment and cure are still limited by normal tissue radiation toxicity, with the corresponding side effects. A fundamentally different paradigm for increasing the therapeutic index of radiation therapy has emerged recently, supported by preclinical research, and based on the FLASH radiation effect. FLASH radiation therapy (FLASH-RT) is an ultra-high-dose-rate delivery of a therapeutic radiation dose within a fraction of a second. Experimental studies have shown that normal tissues seem to be universally spared at these high dose rates, whereas tumors are not. While dose delivery conditions to achieve a FLASH effect are not yet fully characterized, it is currently estimated that doses delivered in less than 200 ms produce normal-tissue-sparing effects, yet effectively kill tumor cells. Despite a great opportunity, there are many technical challenges for the accelerator community to create the required dose rates with novel compact accelerators to ensure the safe delivery of FLASH radiation beams.

4.
Rev Sci Instrum ; 93(10): 103301, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319346

RESUMO

Laser-driven ion beams have gained considerable attention for their potential use in multidisciplinary research and technology. Preclinical studies into their radiobiological effectiveness have established the prospect of using laser-driven ion beams for radiotherapy. In particular, research into the beneficial effects of ultrahigh instantaneous dose rates is enabled by the high ion bunch charge and uniquely short bunch lengths present for laser-driven ion beams. Such studies require reliable, online dosimetry methods to monitor the bunch charge for every laser shot to ensure that the prescribed dose is accurately applied to the biological sample. In this paper, we present the first successful use of an Integrating Current Transformer (ICT) for laser-driven ion accelerators. This is a noninvasive diagnostic to measure the charge of the accelerated ion bunch. It enables online estimates of the applied dose in radiobiological experiments and facilitates ion beam tuning, in particular, optimization of the laser ion source, and alignment of the proton transport beamline. We present the ICT implementation and the correlation with other diagnostics, such as radiochromic films, a Thomson parabola spectrometer, and a scintillator.


Assuntos
Lasers , Aceleradores de Partículas , Radiometria/métodos , Radiobiologia , Aceleração
5.
Sci Rep ; 12(1): 1484, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087083

RESUMO

Radiotherapy is the current standard of care for more than 50% of all cancer patients. Improvements in radiotherapy (RT) technology have increased tumor targeting and normal tissue sparing. Radiations at ultra-high dose rates required for FLASH-RT effects have sparked interest in potentially providing additional differential therapeutic benefits. We present a new experimental platform that is the first one to deliver petawatt laser-driven proton pulses of 2 MeV energy at 0.2 Hz repetition rate by means of a compact, tunable active plasma lens beamline to biological samples. Cell monolayers grown over a 10 mm diameter field were exposed to clinically relevant proton doses ranging from 7 to 35 Gy at ultra-high instantaneous dose rates of 107 Gy/s. Dose-dependent cell survival measurements of human normal and tumor cells exposed to LD protons showed significantly higher cell survival of normal-cells compared to tumor-cells for total doses of 7 Gy and higher, which was not observed to the same extent for X-ray reference irradiations at clinical dose rates. These findings provide preliminary evidence that compact LD proton sources enable a new and promising platform for investigating the physical, chemical and biological mechanisms underlying the FLASH effect.


Assuntos
Neoplasias/radioterapia , Terapia com Prótons/métodos , Radioterapia (Especialidade)/métodos , Radiobiologia/métodos , Linhagem Celular , Humanos , Lasers , Método de Monte Carlo , Radiobiologia/instrumentação , Radiometria/instrumentação , Radiometria/métodos , Dosagem Radioterapêutica , Síncrotrons
6.
IEEE Trans Vis Comput Graph ; 20(2): 196-210, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24356363

RESUMO

Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam, and to investigate transverse particle loss.

7.
Procedia Comput Sci ; 1(1): 1757-1764, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-23762211

RESUMO

Knowledge discovery from large and complex scientific data is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. The combination and close integration of methods from scientific visualization, information visualization, automated data analysis, and other enabling technologies -such as efficient data management- supports knowledge discovery from multi-dimensional scientific data. This paper surveys two distinct applications in developmental biology and accelerator physics, illustrating the effectiveness of the described approach.

8.
Philos Trans A Math Phys Eng Sci ; 364(1840): 585-600, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16483950

RESUMO

Guiding of relativistically intense laser beams in preformed plasma channels is discussed for development of GeV-class laser accelerators. Experiments using a channel guided laser wakefield accelerator at Lawrence Berkeley National Laboratory (LBNL) have demonstrated that near mono-energetic 100 MeV-class electron beams can be produced with a 10 TW laser system. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, is the key to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short-term prospects for intense radiation sources based on laser-driven plasma accelerators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA