RESUMO
A Correction to this paper has been published: https://doi.org/10.1038/s41590-021-00929-x.
RESUMO
Elucidating the mechanisms that sustain asthmatic inflammation is critical for precision therapies. We found that interleukin-6- and STAT3 transcription factor-dependent upregulation of Notch4 receptor on lung tissue regulatory T (Treg) cells is necessary for allergens and particulate matter pollutants to promote airway inflammation. Notch4 subverted Treg cells into the type 2 and type 17 helper (TH2 and TH17) effector T cells by Wnt and Hippo pathway-dependent mechanisms. Wnt activation induced growth and differentiation factor 15 expression in Treg cells, which activated group 2 innate lymphoid cells to provide a feed-forward mechanism for aggravated inflammation. Notch4, Wnt and Hippo were upregulated in circulating Treg cells of individuals with asthma as a function of disease severity, in association with reduced Treg cell-mediated suppression. Our studies thus identify Notch4-mediated immune tolerance subversion as a fundamental mechanism that licenses tissue inflammation in asthma.
Assuntos
Asma/etiologia , Asma/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Receptor Notch4/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Alérgenos/imunologia , Análise de Variância , Asma/diagnóstico , Biomarcadores , Suscetibilidade a Doenças , Expressão Gênica , Via de Sinalização Hippo , Humanos , Tolerância Imunológica , Imunofenotipagem , Proteínas Serina-Treonina Quinases/metabolismo , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Via de Sinalização WntRESUMO
Mast cell (MC) mediator release after crosslinking of surface-bound IgE antibody by ingested antigen underlies food allergy. However, IgE antibodies are not uniformly associated with food allergy, and intestinal MC load is an important determinant. Atopic dermatitis (AD), characterized by pruritis and cutaneous sensitization to allergens, including foods, is strongly associated with food allergy. Tape stripping mouse skin, a surrogate for scratching, caused expansion and activation of small intestinal MCs, increased intestinal permeability, and promoted food anaphylaxis in sensitized mice. Tape stripping caused keratinocytes to systemically release interleukin-33 (IL-33), which synergized with intestinal tuft-cell-derived IL-25 to drive the expansion and activation of intestinal type-2 innate lymphoid cells (ILC2s). These provided IL-4, which targeted MCs to expand in the intestine. Duodenal MCs were expanded in AD. In addition to promoting cutaneous sensitization to foods, scratching may promote food anaphylaxis in AD by expanding and activating intestinal MCs.
Assuntos
Dermatite Atópica/imunologia , Hipersensibilidade Alimentar/imunologia , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Mastócitos/imunologia , Adolescente , Anafilaxia/imunologia , Animais , Proliferação de Células , Criança , Pré-Escolar , Feminino , Humanos , Imunoglobulina E/imunologia , Interleucina-13/metabolismo , Interleucina-33/metabolismo , Interleucina-4/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Pele/imunologia , Pele/lesõesRESUMO
The gut microbiota of preterm infants develops predictably1-7, with pioneer species colonizing the gut after birth, followed by an ordered succession of microorganisms. The gut microbiota is vital to the health of preterm infants8,9, but the forces that shape these predictable dynamics of microbiome assembly are unknown. The environment, the host and interactions between microorganisms all potentially shape the dynamics of the microbiota, but in such a complex ecosystem, identifying the specific role of any individual factor is challenging10-14. Here we use multi-kingdom absolute abundance quantification, ecological modelling and experimental validation to address this challenge. We quantify the absolute dynamics of bacteria, fungi and archaea in a longitudinal cohort of 178 preterm infants. We uncover microbial blooms and extinctions, and show that there is an inverse correlation between bacterial and fungal loads in the infant gut. We infer computationally and demonstrate experimentally in vitro and in vivo that predictable assembly dynamics may be driven by directed, context-dependent interactions between specific microorganisms. Mirroring the dynamics of macroscopic ecosystems15-17, a late-arriving member of the microbiome, Klebsiella, exploits the pioneer microorganism, Staphylococcus, to gain a foothold within the gut. Notably, we find that interactions between different kingdoms can influence assembly, with a single fungal species-Candida albicans-inhibiting multiple dominant genera of gut bacteria. Our work reveals the centrality of simple microbe-microbe interactions in shaping host-associated microbiota, which is critical both for our understanding of microbiota ecology and for targeted microbiota interventions.
Assuntos
Biodiversidade , Microbioma Gastrointestinal , Recém-Nascido Prematuro , Carga Bacteriana , Dieta , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Interações Microbianas , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Atopic dermatitis skin lesions exhibit increased infiltration by basophils. Basophils produce IL-4, which plays an important role in the pathogenesis of atopic dermatitis. OBJECTIVE: We sought to determine the role of basophils in a mouse model of antigen-driven allergic skin inflammation. METHODS: Wild-type mice, mice with selective and inducible depletion of basophils, and mice expressing Il4-driven enhanced green fluorescent protein were subjected to epicutaneous sensitization with ovalbumin or saline. Sensitized skin was examined by histology for epidermal thickening. Cells were analyzed for surface markers and intracellular expression of enhanced green fluorescent protein by flow cytometry. Gene expression was evaluated by real-time reverse transcription-quantitative PCR. RESULTS: Basophils were important for epidermal hyperplasia, dermal infiltration by CD4+ T cells, mast cells, and eosinophils in ovalbumin-sensitized mouse skin and for the local and systemic TH2 response to epicutaneous sensitization. Moreover, basophils were the major source of IL-4 in epicutaneous-sensitized mouse skin and promote the ability of dendritic cells to drive TH2 polarization of naive T cells. CONCLUSION: Basophils play an important role in the development of allergic skin inflammation induced by cutaneous exposure to antigen in mice.
Assuntos
Basófilos , Dermatite Atópica , Interleucina-4 , Ovalbumina , Células Th2 , Animais , Basófilos/imunologia , Camundongos , Interleucina-4/imunologia , Interleucina-4/genética , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Ovalbumina/imunologia , Células Th2/imunologia , Pele/imunologia , Pele/patologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Células Dendríticas/imunologia , Camundongos Transgênicos , Mastócitos/imunologiaRESUMO
BACKGROUND: Atopic dermatitis is characterized by scratching and a TH2-dominated local and systemic response to cutaneously encountered antigens. Dendritic cells (DCs) capture antigens in the skin and rapidly migrate to draining lymph nodes (dLNs) where they drive the differentiation of antigen-specific naive T cells. OBJECTIVE: We sought to determine whether non-T-cell-derived IL-4 acts on skin-derived DCs to promote the TH2 response to cutaneously encountered antigen and allergic skin inflammation. METHODS: DCs from dLNs of ovalbumin (OVA)-exposed skin were analyzed by flow cytometry and for their ability to polarize OVA-specific naive CD4+ T cells. Skin inflammation following epicutaneous sensitization of tape-stripped skin was assessed by flow cytometry of skin cells and real-time quantitative PCR of cytokines. Cytokine secretion and antibody levels were evaluated by ELISA. RESULTS: Scratching upregulated IL4 expression in human skin. Similarly, tape stripping caused rapid basophil-dependent upregulation of cutaneous Il4 expression in mouse skin. In vitro treatment of DCs from skin dLNs with IL-4 promoted their capacity to drive TH2 differentiation. DCs from dLNs of OVA-sensitized skin of Il4-/- mice and CD11c-CreIl4rflox/- mice, which lack IL-4Rα expression in DCs (DCΔ/Δll4ra mice), were impaired in their capacity to drive TH2 polarization compared with DCs from controls. Importantly, OVA-sensitized DCΔ/Δll4ra mice demonstrated impaired allergic skin inflammation and OVA-specific systemic TH2 response evidenced by reduced TH2 cytokine secretion by OVA-stimulated splenocytes and lower levels of OVA-specific IgE and IgG1 antibodies, compared with controls. CONCLUSIONS: Mechanical skin injury causes basophil-dependent upregulation of cutaneous IL-4. IL-4 acts on skin DCs that capture antigen and migrate to dLNs to promote their capacity for TH2 polarization and drive allergic skin inflammation.
RESUMO
BACKGROUND: Dedicator of cytokinesis 8 (DOCK8)-deficient patients have severe eczema, elevated IgE, and eosinophilia, features of atopic dermatitis (AD). OBJECTIVE: We sought to understand the mechanisms of eczema in DOCK8 deficiency. METHODS: Skin biopsy samples were characterized by histology, immunofluorescence microscopy, and gene expression. Skin barrier function was measured by transepidermal water loss. Allergic skin inflammation was elicited in mice by epicutaneous sensitization with ovalbumin (OVA) or cutaneous application of Staphylococcus aureus. RESULTS: Skin lesions of DOCK8-deficient patients exhibited type 2 inflammation, and the patients' skin was colonized by Saureus, as in AD. Unlike in AD, DOCK8-deficient patients had a reduced FOXP3:CD4 ratio in their skin lesions, and their skin barrier function was intrinsically intact. Dock8-/- mice exhibited reduced numbers of cutaneous T regulatory (Treg) cells and a normal skin barrier. Dock8-/- and mice with an inducible Dock8 deletion in Treg cells exhibited increased allergic skin inflammation after epicutaneous sensitization with OVA. DOCK8 was shown to be important for Treg cell stability at sites of allergic inflammation and for the generation, survival, and suppressive activity of inducible Treg cells. Adoptive transfer of wild-type, but not DOCK8-deficient, OVA-specific, inducible Treg cells suppressed allergic inflammation in OVA-sensitized skin of Dock8-/- mice. These mice developed severe allergic skin inflammation and elevated serum IgE levels after topical exposure to Saureus. Both were attenuated after adoptive transfer of WT but not DOCK8-deficient Treg cells. CONCLUSION: Treg cell dysfunction increases susceptibility to allergic skin inflammation in DOCK8 deficiency and synergizes with cutaneous exposure to Saureus to drive eczema in DOCK8 deficiency.
Assuntos
Eczema , Fatores de Troca do Nucleotídeo Guanina , Camundongos Knockout , Pele , Staphylococcus aureus , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Eczema/imunologia , Staphylococcus aureus/imunologia , Humanos , Camundongos , Pele/imunologia , Pele/patologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Dermatite Atópica/imunologiaRESUMO
The adaptors DOCK8 and MyD88 have been linked to serological memory. Here we report that DOCK8-deficient patients had impaired antibody responses and considerably fewer CD27(+) memory B cells. B cell proliferation and immunoglobulin production driven by Toll-like receptor 9 (TLR9) were considerably lower in DOCK8-deficient B cells, but those driven by the costimulatory molecule CD40 were not. In contrast, TLR9-driven expression of AICDA (which encodes the cytidine deaminase AID), the immunoglobulin receptor CD23 and the costimulatory molecule CD86 and activation of the transcription factor NF-κB, the kinase p38 and the GTPase Rac1 were intact. DOCK8 associated constitutively with MyD88 and the tyrosine kinase Pyk2 in normal B cells. After ligation of TLR9, DOCK8 became tyrosine-phosphorylated by Pyk2, bound the Src-family kinase Lyn and linked TLR9 to a Src-kinase Syk-transcription factor STAT3 cascade essential for TLR9-driven B cell proliferation and differentiation. Thus, DOCK8 functions as an adaptor in a TLR9-MyD88 signaling pathway in B cells.
Assuntos
Linfócitos B/imunologia , Fatores de Troca do Nucleotídeo Guanina/imunologia , Memória Imunológica/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Receptor Toll-Like 9/imunologia , Adolescente , Animais , Diferenciação Celular/imunologia , Criança , Pré-Escolar , Citometria de Fluxo , Quinase 2 de Adesão Focal/imunologia , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Fosforilação , Fator de Transcrição STAT3/imunologia , Quinases da Família src/imunologiaRESUMO
Humans with Wiskott-Aldrich syndrome display a progressive immunological disorder associated with compromised Wiskott-Aldrich Syndrome Interacting Protein (WIP) function. Mice deficient in WIP recapitulate such an immunodeficiency that has been attributed to T cell dysfunction; however, any contribution of B cells is as yet undefined. Here we have shown that WIP deficiency resulted in defects in B cell homing, chemotaxis, survival, and differentiation, ultimately leading to diminished germinal center formation and antibody production. Furthermore, in the absence of WIP, several receptors, namely the BCR, BAFFR, CXCR4, CXCR5, CD40, and TLR4, were impaired in promoting CD19 co-receptor activation and subsequent PI3 kinase (PI3K) signaling. The underlying mechanism was due to a distortion in the actin and tetraspanin networks that lead to altered CD19 cell surface dynamics. In conclusion, our findings suggest that, by regulating the cortical actin cytoskeleton, WIP influences the function of CD19 as a general hub for PI3K signaling.
Assuntos
Antígenos CD19/fisiologia , Linfócitos B/imunologia , Proteínas de Transporte/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/imunologia , Citoesqueleto de Actina/ultraestrutura , Actinas/análise , Animais , Formação de Anticorpos , Linfócitos B/efeitos dos fármacos , Linfócitos B/enzimologia , Linfócitos B/ultraestrutura , Proteínas de Transporte/genética , Células Cultivadas , Quimiocinas/farmacologia , Quimiocinas/fisiologia , Quimiotaxia/efeitos dos fármacos , Proteínas do Citoesqueleto , Centro Germinativo/imunologia , Centro Germinativo/patologia , Haptenos , Hemocianinas/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Linfopoese , Proteínas de Membrana/imunologia , Camundongos , Fosforilação , Plasmócitos/imunologia , Processamento de Proteína Pós-Traducional , Quimera por Radiação , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Quimiocinas/fisiologia , Tetraspaninas/análise , Vacínia/imunologia , Vacínia/patologiaRESUMO
BACKGROUND: Skin colonization with Staphylococcus aureus aggravates atopic dermatitis and exaggerates allergic skin inflammation in mice. IL-4 receptor α (IL-4Rα) blockade is beneficial in atopic dermatitis and reduces Saureus skin colonization through unknown mechanisms. The cytokine IL-17A restrains Saureus growth. OBJECTIVES: This study sought to examine the effect of IL-4Rα blockade on Saureus colonization at sites of allergic skin inflammation in mice and determine the mechanism involved. METHODS: BALB/c mice were epicutaneously sensitized with ovalbumin (OVA). Immediately after, PSVue 794-labeled S aureus strain SF8300 or saline was applied and a single dose of anti-IL-4Rα blocking antibody, a mixture of anti-IL-4Rα and anti-IL-17A blocking antibodies, or IgG isotype controls were administered intradermally. Saureus load was assessed 2 days later by in vivo imaging and enumeration of colony forming units. Skin cellular infiltration was examined by flow cytometry and gene expression by quantitative PCR and transcriptome analysis. RESULTS: IL-4Rα blockade decreased allergic skin inflammation in OVA-sensitized skin, as well as in OVA-sensitized and Saureus-exposed skin, evidenced by significantly decreased epidermal thickening and reduced dermal infiltration by eosinophils and mast cells. This was accompanied by increased cutaneous expression of Il17a and IL-17A-driven antimicrobial genes with no change in Il4 and Il13 expression. IL-4Rα blockade significantly decreased Saureus load in OVA-sensitized and S aureus-exposed skin. IL-17A blockade reversed the beneficial effect of IL-4Rα blockade on Saureus clearance and reduced the cutaneous expression of IL-17A-driven antimicrobial genes. CONCLUSIONS: IL-4Rα blockade promotes Saureus clearance from sites of allergic skin inflammation in part by enhancing IL-17A expression.
Assuntos
Anti-Infecciosos , Dermatite Atópica , Camundongos , Animais , Dermatite Atópica/tratamento farmacológico , Interleucina-17/genética , Ovalbumina , Inflamação , Pele , Antígenos , Receptores de Interleucina-4 , Camundongos Endogâmicos BALB CRESUMO
BACKGROUND: The type II transmembrane protein fibrinogen-like protein 2 (FGL2) plays critical roles in hemostasis and immune regulation. The C-terminal immunoregulatory domain of FGL2 can be secreted and is a mediator of regulatory T (Treg) cell suppression. Fgl2-/- mice develop autoantibodies and glomerulonephritis and have impaired Treg cell function. OBJECTIVE: Our aim was to identify the genetic underpinning and immune function in a patient with childhood onset of leukocytoclastic vasculitis, systemic inflammation, and autoantibodies. METHODS: Whole-exome sequencing was performed on patient genomic DNA. FGL2 protein expression was examined in HEK293 transfected cells by immunoblotting and in PBMCs by flow cytometry. T follicular helper cells and Treg cells were examined by flow cytometry. Treg cell suppression of T-cell proliferation was assessed in vitro. RESULTS: The patient had a homozygous mutation in FGL2 (c.614_617del:p.V205fs), which led to the expression of a truncated FGL2 protein that preserves the N-terminal domain but lacks the C-terminal immunoregulatory domain. The patient had an increased percentage of circulating T follicular helper and Treg cells. The patient's Treg cells had impaired in vitro suppressive ability that was rescued by the addition of full-length FGL2. Unlike full-length FGL2, the truncated FGL2V205fs mutant failed to suppress T-cell proliferation. CONCLUSIONS: We identified a homozygous mutation in FGL2 in a patient with immune dysregulation and impaired Treg cell function. Soluble FGL2 rescued the Treg cell defect, suggesting that it may provide a useful therapy for the patient.
Assuntos
Autoanticorpos , Linfócitos T Reguladores , Camundongos , Humanos , Animais , Células HEK293 , Ativação Linfocitária , Mutação , Fibrinogênio/genética , Fibrinogênio/metabolismoRESUMO
BACKGROUND: Atopic dermatitis (AD) is characterized by TH2-dominated skin inflammation and systemic response to cutaneously encountered antigens. The TH2 cytokines IL-4 and IL-13 play a critical role in the pathogenesis of AD. The Q576->R576 polymorphism in the IL-4 receptor alpha (IL-4Rα) chain common to IL-4 and IL-13 receptors alters IL-4 signaling and is associated with asthma severity. OBJECTIVE: We sought to investigate whether the IL-4Rα R576 polymorphism is associated with AD severity and exaggerates allergic skin inflammation in mice. METHODS: Nighttime itching interfering with sleep, Rajka-Langeland, and Eczema Area and Severity Index scores were used to assess AD severity. Allergic skin inflammation following epicutaneous sensitization of mice 1 or 2 IL-4Rα R576 alleles (QR and RR) and IL-4Rα Q576 (QQ) controls was assessed by flow cytometric analysis of cells and quantitative RT-PCR analysis of cytokines in skin. RESULTS: The frequency of nighttime itching in 190 asthmatic inner-city children with AD, as well as Rajka-Langeland and Eczema Area and Severity Index scores in 1116 White patients with AD enrolled in the Atopic Dermatitis Research Network, was higher in subjects with the IL-4Rα R576 polymorphism compared with those without, with statistical significance for the Rajka-Langeland score. Following epicutaneous sensitization of mice with ovalbumin or house dust mite, skin infiltration by CD4+ cells and eosinophils, cutaneous expression of Il4 and Il13, transepidermal water loss, antigen-specific IgE antibody levels, and IL-13 secretion by antigen-stimulated splenocytes were significantly higher in RR and QR mice compared with QQ controls. Bone marrow radiation chimeras demonstrated that both hematopoietic cells and stromal cells contribute to the mutants' exaggerated allergic skin inflammation. CONCLUSIONS: The IL-4Rα R576 polymorphism predisposes to more severe AD and increases allergic skin inflammation in mice.
Assuntos
Dermatite Atópica , Eczema , Camundongos , Animais , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Células Th2 , Pele/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Prurido/metabolismo , Eczema/metabolismoRESUMO
BACKGROUND: Autoantibodies against type I IFNs occur in approximately 10% of adults with life-threatening coronavirus disease 2019 (COVID-19). The frequency of anti-IFN autoantibodies in children with severe sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is unknown. OBJECTIVE: We quantified anti-type I IFN autoantibodies in a multicenter cohort of children with severe COVID-19, multisystem inflammatory syndrome in children (MIS-C), and mild SARS-CoV-2 infections. METHODS: Circulating anti-IFN-α2 antibodies were measured by a radioligand binding assay. Whole-exome sequencing, RNA sequencing, and functional studies of peripheral blood mononuclear cells were used to study any patients with levels of anti-IFN-α2 autoantibodies exceeding the assay's positive control. RESULTS: Among 168 patients with severe COVID-19, 199 with MIS-C, and 45 with mild SARS-CoV-2 infections, only 1 had high levels of anti-IFN-α2 antibodies. Anti-IFN-α2 autoantibodies were not detected in patients treated with intravenous immunoglobulin before sample collection. Whole-exome sequencing identified a missense variant in the ankyrin domain of NFKB2, encoding the p100 subunit of nuclear factor kappa-light-chain enhancer of activated B cells, aka NF-κB, essential for noncanonical NF-κB signaling. The patient's peripheral blood mononuclear cells exhibited impaired cleavage of p100 characteristic of NFKB2 haploinsufficiency, an inborn error of immunity with a high prevalence of autoimmunity. CONCLUSIONS: High levels of anti-IFN-α2 autoantibodies in children and adolescents with MIS-C, severe COVID-19, and mild SARS-CoV-2 infections are rare but can occur in patients with inborn errors of immunity.
Assuntos
COVID-19 , Interferon Tipo I , Adulto , Humanos , Criança , Adolescente , SARS-CoV-2 , Autoanticorpos , NF-kappa B , Haploinsuficiência , Leucócitos Mononucleares , Subunidade p52 de NF-kappa BRESUMO
DOCK8 deficient patients are susceptible to skin infection with Staphylococcus aureus which is normally cleared by neutrophils. We examined the mechanism of this susceptibility in mice. Dock8-/- mice had delayed clearance of S. aureus from skin mechanically injured by tape stripping. The numbers and viability of neutrophils in infected but not in uninfected, tape stripped skin were significantly reduced in Dock8-/- mice compared to WT controls. This is despite comparable numbers of circulating neutrophils, and normal to elevated cutaneous expression of Il17a and IL-17A inducible neutrophil attracting chemokines Cxcl1, Cxcl2 and Cxcl3. DOCK8 deficient neutrophils were significantly more susceptible to cell death upon in vitro exposure to S. aureus and exhibited reduced phagocytosis of S. aureus bioparticles but had a normal respiratory burst. Impaired neutrophil survival in infected skin and defective neutrophil phagocytosis likely underlie the susceptibility to cutaneous S. aureus infection in DOCK8 deficiency.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Dermatopatias Infecciosas , Infecções Estafilocócicas , Animais , Camundongos , Neutrófilos/metabolismo , Staphylococcus aureus/fisiologia , Pele , Camundongos Endogâmicos C57BL , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismoRESUMO
Certain autoimmune diseases result in abnormal bone homeostasis, but association of immunodeficiency with bone is poorly understood. Osteoclasts, which derive from bone marrow cells, are under the control of the immune system. Differentiation of osteoclasts is mainly regulated by signaling pathways activated by RANK and immune receptors linked to ITAM-harboring adaptors. However, it is unclear how the two signals merge to cooperate in osteoclast differentiation. Here we report that mice lacking the tyrosine kinases Btk and Tec show severe osteopetrosis caused by a defect in bone resorption. RANK and ITAM signaling results in formation of a Btk(Tec)/BLNK(SLP-76)-containing complex and PLCgamma-mediated activation of an essential calcium signal. Furthermore, Tec kinase inhibition reduces osteoclastic bone resorption in models of osteoporosis and inflammation-induced bone destruction. Thus, this study reveals the importance of the osteoclastogenic signaling complex composed of tyrosine kinases, which may provide the molecular basis for a new therapeutic strategy.
Assuntos
Diferenciação Celular , Osteoclastos/citologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tirosina Quinase da Agamaglobulinemia , Motivos de Aminoácidos , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Sinalização do Cálcio , Modelos Animais de Doenças , Feminino , Camundongos , Osteoclastos/metabolismo , Osteopetrose/tratamento farmacológico , Osteopetrose/genética , Osteopetrose/metabolismo , Osteoporose/metabolismo , Osteoporose/patologia , Fosfolipase C gama/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Ligante RANK/metabolismo , Ligante RANK/farmacologiaRESUMO
BACKGROUND: Atopic dermatitis (AD) is a common skin condition with relatively few therapeutic alternatives. These include corticosteroids, which address inflammation but not superinfection, and Januse kinase (JAK) inhibitors, which have a US Food and Drug Administration (FDA) black box for potential carcinogenicity. METHODS: We demonstrate that S14, a synthetic derivative of ant venom-derived solenopsin, has potent anti inflammatory effects on the OVA murine model of atopic dermatitis. S14 has demonstrated prior activity in murine psoriasis and has the benefit of ceramide anti-inflammatory effects without being able to be metabolized into proinflammatory sphingosine-1 phosphate. RESULTS: The efficacy of S14 accompanied by the induction of IL-12 suggests a commonality in inflammatory skin disorders, and our results suggest that pharmacological ceramide restoration will be broadly effective for inflammatory skin disease. CONCLUSIONS: Solenopsin derivative S14 has anti-inflammatory effects in murine models of AD and psoriasis. This makes S14 a strong candidate for human use, and pre-IND studies are warranted.J Drugs Dermatol. 2023;22(10):1001-1006 doi:10.36849/JDD.7308.
Assuntos
Venenos de Formiga , Dermatite Atópica , Psoríase , Humanos , Camundongos , Animais , Dermatite Atópica/tratamento farmacológico , Venenos de Formiga/uso terapêutico , Ceramidas/uso terapêutico , Psoríase/tratamento farmacológico , Anti-Inflamatórios/uso terapêuticoRESUMO
BACKGROUND: Allergic skin inflammation elicited in mice by epicutaneous (EC) sensitization with antigen shares characteristics with human atopic dermatitis (AD). OBJECTIVE: We characterized gene expression by single cells in mouse skin undergoing antigen-driven allergic inflammation and compared the results with findings in AD skin lesions. METHODS: Mice were EC sensitized by application of ovalbumin (OVA) or saline to tape-stripped skin. Single-cell RNA sequencing was performed on skin cells 12 days later. Flow cytometry analysis was performed to validate results. RESULTS: Sequencing identified 7 nonhematopoietic and 6 hematopoietic cell subsets in EC-sensitized mouse skin. OVA sensitization resulted in the expansion in the skin of T cells, dendritic cells, macrophages, mast cells/basophils, fibroblasts, and myocytes cell clusters, and in upregulation of TH2 cytokine gene expression in CD4+ T cells and mast cells/basophils. Genes differentially expressed in OVA-sensitized skin included genes important for inflammation in dendritic cells and macrophages, collagen deposition, and leukocyte migration in fibroblasts, chemotaxis in endothelial cells and skin barrier integrity, and differentiation in KCs-findings that recapitulate those in AD skin lesions. Unexpectedly, mast cells/basophils, rather than T cells, were the major source of Il4 and ll13 in OVA-sensitized mouse skin. In addition, our results suggest novel pathways in fibroblast and endothelial cells that may contribute to allergic skin inflammation. CONCLUSION: The gene expression profile of single cells in mouse skin undergoing antigen-driven shares many features with that in AD skin lesions and unveils novel pathways that may be involved in allergic skin inflammation.
Assuntos
Dermatite Atópica , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Pele , Células Th2 , TranscriptomaRESUMO
The identification of patients with monogenic gene defects have illuminated the function of different proteins in the immune system, including proteins that regulate the actin cytoskeleton. Many of these actin regulatory proteins are exclusively expressed in leukocytes and regulate the formation and branching of actin filaments. Their absence or abnormal function leads to defects in immune cell shape, cellular projections, migration, and signaling. Through the study of patients' mutations and generation of mouse models that recapitulate the patients' phenotypes, our laboratory and others have gained a better understanding of the role these proteins play in cell biology and the underlying pathogenesis of immunodeficiencies and immune dysregulatory syndromes.