Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Lipid Res ; 55(8): 1702-10, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24927728

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent complication of obesity, yet cellular mechanisms that lead to its development are not well defined. Previously, we have documented hepatic steatosis in mice carrying a mutation in the Sec61a1 gene. Here we examined the mechanism behind NAFLD in Sec61a1 mutant mice. Livers of mutant mice exhibited upregulation of Pparg and its target genes Cd36, Cidec, and Lpl, correlating with increased uptake of fatty acid. Interestingly, these mice also displayed activation of the heat shock response (HSR), with elevated levels of heat shock protein (Hsp) 70, Hsp90, and heat shock factor 1. In cell lines, inhibition of Hsp90 function reduced Pparγ signaling and protein levels. Conversely, overexpression of Hsp90 increased Pparγ signaling and protein levels by reducing degradation. This may occur via a physical interaction as Hsp90 and Pparγ coimmunoprecipitated in vivo. Furthermore, inhibition of Hsp90 in Sec61a1 mutant hepatocytes also reduced Pparγ protein levels and signaling. Finally, overexpression of Hsp90 in liver cell lines increased neutral lipid accumulation, and this accumulation was blocked by Hsp90 inhibition. Our results show that the HSR and Hsp90 play an important role in the development of NAFLD, opening new avenues for the prevention and treatment of this highly prevalent disease.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR gama/metabolismo , Transdução de Sinais , Animais , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP90/genética , Hepatócitos/patologia , Fígado/patologia , Camundongos , Camundongos Mutantes , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR gama/genética , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo
2.
Nat Cell Biol ; 9(3): 268-75, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17310242

RESUMO

At the core of the mammalian circadian clock is a feedback loop in which the heterodimeric transcription factor CLOCK-Brain, Muscle Arnt-like-1 (BMAL1) drives expression of its negative regulators, periods (PERs) and cryptochromes (CRYs). Here, we provide evidence that CLOCK-Interacting Protein, Circadian (CIPC) is an additional negative-feedback regulator of the circadian clock. CIPC exhibits circadian regulation in multiple tissues, and it is a potent and specific inhibitor of CLOCK-BMAL1 activity that functions independently of CRYs. CIPC-CLOCK protein complexes are present in vivo, and depletion of endogenous CIPC shortens the circadian period length. CIPC is unrelated to known proteins and has no recognizable homologues outside vertebrates. Our results suggest that negative feedback in the mammalian circadian clock is divided into distinct pathways, and that the addition of new genes has contributed to the complexity of vertebrate clocks.


Assuntos
Relógios Biológicos/fisiologia , Proteínas de Transporte/metabolismo , Ritmo Circadiano/fisiologia , Transativadores/metabolismo , Fatores de Transcrição ARNTL , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas CLOCK , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/química , Núcleo Celular/metabolismo , Criptocromos , Flavoproteínas/genética , Flavoproteínas/metabolismo , Regulação da Expressão Gênica , Imunoprecipitação , Rim/metabolismo , Fígado/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Miocárdio/metabolismo , Células NIH 3T3 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Circadianas Period , Ligação Proteica , RNA Antissenso/genética , Transativadores/genética , Ativação Transcricional/genética , Transfecção , Técnicas do Sistema de Duplo-Híbrido
3.
Biochem Biophys Res Commun ; 427(4): 768-73, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23044417

RESUMO

The major constituent of the eukaryotic ER protein-translocation channel (Sec61p in yeast, Sec61α in higher eukaryotes) shows a high degree of evolutionary conservation from yeast to humans. The vast majority of eukaryotic species have a conserved di-tyrosine in the 4th ER luminal loop. Previously, we discovered through a screen of ethylnitrosourea- (ENU-) mutagenized mice that substitution of the latter of these tyrosines with histidine (Y344H) of the murine Sec61α protein results in diabetes and hepatic steatosis in mice that is a result of ER stress. To further characterize the mechanism behind ER stress in these mice we made the homologous mutation in yeast Sec61p (Y345H). We found that this mutation increased sensitivity of yeast to ER stressing agents and to reduction of Inositol Requiring Enzyme 1 (IRE1) activity. Furthermore, we found that, while this mutation did not affect translocation, it did delay degradation of the model ER-associated degradation (ERAD) substrate CPY(∗). Replacing both ER luminal tyrosines with alanines resulted in a destabilization of the Sec61 protein that was rescued by over expression of Sss1p. This double mutant still lacked a noticeable translocation defect after stabilization by Sss1p, but exhibited a similar defect in CPY(∗) degradation.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteínas de Membrana Transportadoras/metabolismo , Modelos Químicos , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Hexosiltransferases/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Mutação , Biossíntese de Proteínas , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Translocação SEC , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
J Lipid Res ; 52(10): 1775-86, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21807889

RESUMO

Through forward genetic screening in the mouse, a recessive mutation (couch potato, cpto) has been discovered that dramatically reduces plasma cholesterol levels across all lipoprotein classes. The cpto mutation altered a highly conserved residue in the Src homology domain 3 (SH3) domain of the Mia2 protein. Full-length hepatic Mia2 structurally and functionally resembled the related Mia3 protein. Mia2 localized to endoplasmic reticulum (ER) exit sites, suggesting a role in guiding proteins from the ER to the Golgi. Similarly to the Mia3 protein, Mia2's cytosolic C terminus interacted directly with COPII proteins Sec23 and Sec24, whereas its lumenal SH3 domain may facilitate interactions with secretory cargo. Fractionation of plasma revealed that Mia2(cpto/cpto) mice had lower circulating VLDL, LDL, HDL, and triglycerides. Mia2 is thus a novel, hepatic, ER-to-Golgi trafficking protein that regulates cholesterol metabolism.


Assuntos
Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Fígado/metabolismo , Mutação , Triglicerídeos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Lipoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas Supressoras de Tumor/genética , Domínios de Homologia de src
5.
PLoS Genet ; 3(1): e8, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17206865

RESUMO

Premature truncation alleles in the ALMS1 gene are a frequent cause of human Alström syndrome. Alström syndrome is a rare disorder characterized by early obesity and sensory impairment, symptoms shared with other genetic diseases affecting proteins of the primary cilium. ALMS1 localizes to centrosomes and ciliary basal bodies, but truncation mutations in Alms1/ALMS1 do not preclude formation of cilia. Here, we show that in vitro knockdown of Alms1 in mice causes stunted cilia on kidney epithelial cells and prevents these cells from increasing calcium influx in response to mechanical stimuli. The stunted-cilium phenotype can be rescued with a 5' fragment of the Alms1 cDNA, which resembles disease-associated alleles. In a mouse model of Alström syndrome, Alms1 protein can be stably expressed from the mutant allele and is required for cilia formation in primary cells. Aged mice developed specific loss of cilia from the kidney proximal tubules, which is associated with foci of apoptosis or proliferation. As renal failure is a common cause of mortality in Alström syndrome patients, we conclude that this disease should be considered as a further example of the class of renal ciliopathies: wild-type or mutant alleles of the Alström syndrome gene can support normal kidney ciliogenesis in vitro and in vivo, but mutant alleles are associated with age-dependent loss of kidney primary cilia.


Assuntos
Cílios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Rim/citologia , Rim/metabolismo , Anormalidades Múltiplas/patologia , Envelhecimento/metabolismo , Animais , Proteínas de Ciclo Celular , Cílios/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Homeostase , Humanos , Rim/anormalidades , Rim/patologia , Mecanotransdução Celular , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Síndrome , Transcrição Gênica
6.
Curr Biol ; 13(3): 258-62, 2003 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-12573224

RESUMO

The conserved vacuolar protein-sorting (Vps) pathway controls the trafficking of proteins to the vacuole/lysosome. Both the internalization of ubiquitylated cargo from the plasma membrane and its sorting at the late endosome via the Vps pathway depend on ubiquitin (Ub) binding motifs present in trafficking regulators. Here we report that Ub controls yet a third step in the Vps pathway. Vps9p, which promotes endosomal and Golgi-derived vesicle fusion, binds directly to Ub via a Cue1p-homologous (CUE) domain. The CUE domain is structurally related to the Ub-associated (UBA) domain. In an assay for vacuolar delivery of a transmembrane receptor fused to Ub, a Ub mutation impairing interaction with Vps9p led to a cytoplasmic block in receptor trafficking. This block resembled that of a receptor fused to wild-type Ub but expressed in a vps9-null background. Strikingly, this trafficking defect caused by a mutant Ub was rescued by deletion of the Vps9p CUE domain, indicating that lack of the CUE domain renders Vps9p independent of Ub for activation in vivo. We thus provide evidence for biochemical and genetic interactions between Ub and a novel Ub binding domain in Vps9p. Ub plays a positive role, whereas the CUE domain plays both positive and negative roles in Vps9p function in trafficking.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo , Proteínas de Transporte Vesicular , Sequência de Aminoácidos , Proteínas de Transporte/genética , Endocitose/fisiologia , Proteínas Fúngicas/genética , Fatores de Troca do Nucleotídeo Guanina , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/genética
7.
Endocrinology ; 155(7): 2391-401, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24828610

RESUMO

Mutations in the PCSK1 gene encoding prohormone convertase 1/3 (PC1/3) are strongly associated with obesity in humans. The PC1/3(N222D) mutant mouse thus far represents the only mouse model that mimics the PC1/3 obesity phenotype in humans. The present investigation addresses the cell biology of the N222D mutation. Metabolic labeling experiments reveal a clear defect in the kinetics of insulin biosynthesis in islets from PC1/3(N222D) mutant mice, resulting in an increase in both proinsulin and its processing intermediates, predominantly lacking cleavage at the Arg-Arg site. Although the mutant PC1/3 zymogen is correctly processed to the 87-kDa form, pulse-chase immunoprecipitation experiments, labeling, and immunohistochemical experiments using uncleavable variants all demonstrate that the PC1/3-N222D protein is largely mislocalized compared with similar wild-type (WT) constructs, being predominantly retained in the endoplasmic reticulum. The PC1/3-N222D mutant also undergoes more efficient degradation via the ubiquitin-proteasome system than the WT enzyme. Lastly, the mutant PC1/3-N222D protein coimmunoprecipitates with WT PC1/3 and exerts a modest effect on intracellular retention of the WT enzyme. These profound alterations in the cell biology of PC1/3-N222D are likely to contribute to the defective insulin biosynthetic events observed in the mutant mice and may be relevant to the dramatic contributions of polymorphisms in this gene to human obesity.


Assuntos
Mutação , Obesidade/genética , Pró-Proteína Convertase 1/genética , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Feminino , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Immunoblotting , Insulina/biossíntese , Ilhotas Pancreáticas/metabolismo , Cinética , Masculino , Camundongos , Microscopia Confocal , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Obesidade/metabolismo , Pró-Proteína Convertase 1/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Transporte Proteico/genética , Proteólise , Ubiquitina/metabolismo
8.
PLoS One ; 9(10): e110226, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329148

RESUMO

In a screen for genes that affect the metabolic response to high-fat diet (HFD), we selected one line of N-ethyl-N-nitrosourea (ENU)-mutagenized mice, Jll, with dominantly inherited resistance to diet-induced obesity (DIO). Mutant animals had dramatically reduced body weight and fat mass, and low basal insulin and glucose levels relative to unaffected controls. Both white adipose tissue (WAT) and brown adipose tissue (BAT) depots were smaller in mutant animals. Mutant animals fed a HFD gained only slightly more weight than animals fed regular chow, and were protected from hepatic lipid accumulation. The phenotype was genetically linked to a 5.7-Mb interval on chromosome 12, and sequencing of the entire interval identified a single coding mutation, predicted to cause a methionine-to-isoleucine substitution at position 279 of the Adcy3 protein (Adcy3M279I, henceforth referred to as Adcy3Jll). The mutant protein is hyperactive, possibly constitutively so, producing elevated levels of cyclic AMP in a cell-based assay. These mice demonstrate that increased Adcy3 activity robustly protect animals from diet-induced metabolic derangements.


Assuntos
Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Dieta Hiperlipídica/efeitos adversos , Mutação , Obesidade/etiologia , Obesidade/genética , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Alelos , Animais , Colforsina/farmacologia , AMP Cíclico/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Feminino , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/patologia
9.
Diabetes ; 59(2): 460-70, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19934005

RESUMO

OBJECTIVE: Type 2 diabetes is caused by both environmental and genetic factors. To better understand the genetic factors we used forward genetics to discover genes that have not previously been implicated in the development of hyperglycemia or diabetes. RESEARCH DESIGN AND METHODS: Offspring of ethylnitrosurea-mutagenized C57BL/6 mice were bred to homozygosity, maintained on high-fat diet, and screened for hyperglycemia. The phenotype in one diabetic family of mice was mapped among hybrid F2s with single nucleotide polymorphic markers, followed by candidate gene sequencing to identify the gene harboring the causative mutation. Subsequent analysis was done on wild-type, heterozygous, and homozygous mutant mice on a pure C57BL/6 background. RESULTS: Diabetes mapped to a point mutation in the Sec61a1 gene that encodes a His to Tyr substitution at amino acid 344 (Y344H). Metabolic profiling, histological examination, and electron microscopy revealed that hyperglycemia was a result of insulin insufficiency due to beta-cell apoptosis brought on by endoplasmic reticulum (ER) stress. Transgenic beta-cell-specific expression of Sec61a1 in mutant mice rescued diabetes, beta-cell apoptosis, and ER stress. In vitro experiments showed that Sec61alpha1 plays a critical role in the beta-cell response to glucose. CONCLUSIONS: Here we phenotypically characterize diabetes in mice with a novel point mutation in a basic component of the cell's ER protein translocation machinery, Sec61alpha1. Translocation by the mutant protein does not appear to be affected. Rather, ER homeostasis is perturbed leading to beta-cell death and diabetes.


Assuntos
Diabetes Mellitus/genética , Fígado Gorduroso/genética , Proteínas de Membrana/genética , Substituição de Aminoácidos , Animais , Primers do DNA , Etilnitrosoureia/toxicidade , Heterozigoto , Histidina/genética , Homozigoto , Humanos , Imuno-Histoquímica , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/ultraestrutura , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL/genética , Mutagênese , Pâncreas/patologia , Fenótipo , Mutação Puntual , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco , Canais de Translocação SEC , Tirosina/genética
10.
PLoS One ; 4(9): e6871, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19727444

RESUMO

BACKGROUND: Type 2 diabetes develops due to a combination of insulin resistance and beta-cell failure and current therapeutics aim at both of these underlying causes. Several negative regulators of insulin signaling are known and are the subject of drug discovery efforts. We sought to identify novel contributors to insulin resistance and hence potentially novel targets for therapeutic intervention. METHODOLOGY: An arrayed cDNA library encoding 18,441 human transcripts was screened for inhibitors of insulin signaling and revealed known inhibitors and numerous potential novel regulators. The novel hits included proteins of various functional classes such as kinases, phosphatases, transcription factors, and GTPase associated proteins. A series of secondary assays confirmed the relevance of the primary screen hits to insulin signaling and provided further insight into their modes of action. CONCLUSION/SIGNIFICANCE: Among the novel hits was PALD (KIAA1274, paladin), a previously uncharacterized protein that when overexpressed led to inhibition of insulin's ability to down regulate a FOXO1A-driven reporter gene, reduced upstream insulin-stimulated AKT phosphorylation, and decreased insulin receptor (IR) abundance. Conversely, knockdown of PALD gene expression resulted in increased IR abundance, enhanced insulin-stimulated AKT phosphorylation, and an improvement in insulin's ability to suppress FOXO1A-driven reporter gene activity. The present data demonstrate that the application of arrayed genome-wide screening technologies to insulin signaling is fruitful and is likely to reveal novel drug targets for insulin resistance and the metabolic syndrome.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Biblioteca Gênica , Genes Reporter , Humanos , Resistência à Insulina , Fosfoproteínas Fosfatases , Fosforilação , Proteínas/metabolismo , Proteínas/fisiologia , Transdução de Sinais
11.
Hum Mol Genet ; 15(11): 1884-93, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16644867

RESUMO

Prohormone convertase 1 (PC1) mutations lead to obesity in humans. However, Pc1 knockout mice do not become obese; in fact, they are runted due to a defect in growth-hormone releasing hormone processing, leading to the speculation that PC1 subserves different functions between mouse and human. Here, we report a novel allele of mouse Pc1 (N222D) that leads to obesity, abnormal proinsulin processing and multiple endocrinological defects. Increased energy intake and a more efficient metabolism contribute to the obesity in Pc1(N222D/N222D) mice. Defective proinsulin processing leads to glucose intolerance, but neither insulin resistance nor diabetes develop despite obesity. The obesity is associated with impaired autocatalytic activation of mature PC1 and reduced hypothalamic alpha-MSH. This is the first characterization of Pc1 mutation in a model organism that mimics human PC1 deficiency.


Assuntos
Hiperfagia/genética , Mutação , Pró-Proteína Convertase 1/genética , Sequência de Aminoácidos , Animais , Glucose/metabolismo , Humanos , Hipotálamo/patologia , Insulina/genética , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Obesidade/genética , Obesidade/metabolismo , Homologia de Sequência de Aminoácidos
12.
PLoS Genet ; 1(2): e20, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16121255

RESUMO

Congenital nephrogenic diabetes insipidus (NDI) is a disease characterized by failure of the kidney to concentrate urine in response to vasopressin. Human kindreds with nephrogenic diabetes insipidus have been found to harbor mutations in the vasopressin receptor 2 (Avpr2) gene or the vasopressin-sensitive water channel aquaporin-2 (Aqp2) gene. Development of a treatment is rendered difficult due to the lack of a viable animal model. Through forward genetic screening of ethylnitrosourea-mutagenized mice, we report the identification and characterization of a mouse model of NDI, with an F204V mutation in the Aqp2 gene. Unlike previously attempted murine models of NDI, our mice survive to adulthood and more exactly recapitulate the human disorder. Previous in vitro experiments using renal cell lines suggest recessive Aqp2 mutations result in improper trafficking of the mutant water pore. Using these animals, we have directly proven this hypothesis of improper AQP2 translocation as the molecular defect in nephrogenic diabetes insipidus in the intact organism. Additionally, using a renal cell line we show that the mutated protein, AQP2-F204V, is retained in the endoplasmic reticulum and that this abnormal localization can be rescued by wild-type protein. This novel mouse model allows for further mechanistic studies as well as testing of pharmacological and gene therapies for NDI.


Assuntos
Aquaporina 2/genética , Diabetes Insípido/genética , Mutação de Sentido Incorreto , Animais , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Etilnitrosoureia , Camundongos , Camundongos Mutantes , Transporte Proteico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA