Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1594(1): 84-99, 2002 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-11825611

RESUMO

The binding of several different categories of small molecules to bovine (BSA) and human (HSA) serum albumins has been studied for many years through different spectroscopic techniques to elucidate details of the protein structure and binding mechanism. In this work we present the results of the study of the interactions of BSA and HSA with the anionic sodium dodecyl sulfate (SDS), cationic cethyltrimethylammonium chloride (CTAC) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (HPS) monitored by fluorescence spectroscopy of the intrinsic tryptophans at pH 5.0. Similarly to pH 7.0 and 9.0, at low concentrations, the interaction of BSA with these surfactants shows a quenching of fluorescence with Stern-Volmer quenching constants of (1.1+/-0.1)x10(4) M(-1), (3.2+/-0.1)x10(3) M(-1) and (2.1+/-0.1)x10(3) M(-1) for SDS, HPS and CTAC, respectively, which are associated to the 'effective' association constants to the protein. On the interaction of these surfactants with HSA, an opposite effect was observed as compared to BSA, i.e., an enhancement of fluorescence takes place. For both proteins, at low surfactant concentrations, a positive cooperativity was observed and the Hill plot model was used to estimate the number of surfactant binding sites, as well as the association constants of the surfactants to the proteins. It is worthy of notice that the binding constants for the surfactants at pH 5.0 are lower as compared to pH 7.0 and 9.0. This is probably due to fact that the protein at this acid pH is quite compact reducing the accessibility of the surfactants to the hydrophobic cavities in the binding sites. The interaction of myristic acid with both proteins shows a similar fluorescence behaviour, suggesting that the mechanism of the interaction is the same. Recently published crystallographic studies of HSA-myristate complex were used to perform a modelling study with the aim to explain the fluorescence results. The crystallographic structure reveals that a total of five myristic acid molecules are asymmetrically bound in the macromolecule. Three of these sites correspond to higher affinity ones and correlate with high association constants described in the literature. Our models for BSA and HSA with bound SDS suggest that the surfactant could be bound at the same sites as those reported in the crystal structure for the fatty acid. The differences in tryptophan vicinity upon surfactant binding are explored in the models in order to explain the observed spectroscopic changes. For BSA the quenching is due to a direct contact of a surfactant molecule with the indole of W131 residue. It is clear that the binding site in BSA which is very close, in contact with tryptophan W131, corresponds to a lower affinity site, explaining the lower binding constants obtained from fluorescence studies. In the case of HSA the enhancement of fluorescence is due to the removal of static quenching of W214 residue in the intact protein caused by nearby residues in the vicinity of this tryptophan.


Assuntos
Soroalbumina Bovina/química , Albumina Sérica/química , Tensoativos/química , Cetrimônio , Compostos de Cetrimônio/química , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Modelos Moleculares , Compostos de Amônio Quaternário/química , Homologia de Sequência , Dodecilsulfato de Sódio/química , Espectrometria de Fluorescência
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 56A(11): 2255-71, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11058071

RESUMO

Bovine (BSA) and human (HSA) serum albumins are frequently used in biophysical and biochemical studies since they have a similar folding, a well known primary structure, and they have been associated with the binding of many different categories of small molecules. One important difference of BSA and HSA is the fact that bovine albumin has two tryptophan residues while human albumin has a unique tryptophan. In this work results are presented for the interaction of BSA and HSA with several ionic surfactants, namely, anionic sodium dodecyl sulfate (SDS), cationic cethyltrimethylammonium chloride (CTAC) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (HPS), as monitored by fluorescence spectroscopy of intrinsic tryptophans and circular dichroism spectroscopy. On the interaction of all three surfactants with BSA, at low concentrations, a quenching of fluorescence takes place and Stern-Volmer analysis allowed to estimate their 'effective' association constants to the protein: for SDS, CTAC and HPS at pH 7.0 these constants are, respectively, (1.4+/-0.1) x 10(5) M(-1), (8.9+/-0.1) x 10(3) M(-1) and (1.4+/-0.1) x 10(4) M(-1). A blue shift of maximum emission is observed from 345 to 330 nm upon surfactant binding. Analysis of fluorescence emission spectra allowed to separate three species in solution which were associated to native protein, a surfactant protein complex and partially denatured protein. The binding at low surfactant concentrations follows a Hill plot model displaying positive cooperativity and a number of surfactant binding sites very close to the number of cationic or anionic residues present in the protein. Circular dichroism data corroborated the partial loss of secondary structure upon surfactant addition showing the high stability of serum albumin. The interaction of the surfactants with HSA showed an enhancement of fluorescence at low concentrations, opposite to the effect on BSA, consistent with the existence of a unique buried tryptophan residue in this protein with considerable static quenching in the native state. The effects of surfactants at low concentrations were very similar to those of myristic acid suggesting a non specific binding through hydrophobic interaction modulated by eletrostatic interactions. The changes in the vicinity of the tryptophan residues are discussed based on the recently published crystallographic structure of HSA myristate complex (S. Curry et al., Nat. Struct. Biol. 5 (1998) 827).


Assuntos
Compostos de Amônio Quaternário/química , Soroalbumina Bovina/química , Albumina Sérica/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Acrilamida/química , Animais , Soluções Tampão , Bovinos , Dicroísmo Circular , Humanos , Ácido Mirístico/química , Estrutura Secundária de Proteína , Albumina Sérica/metabolismo , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Trometamina/química , Triptofano/química
3.
Biophys J ; 85(2): 1259-68, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12885669

RESUMO

The aggregate morphology of meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS(4)) in aqueous solution is investigated by using small angle x-ray scattering (SAXS) technique. Measurements were performed at pH 4.0 and 9.0 to monitor the pH influence on the structural parameters of the aggregates. Radii of gyration were obtained from distance distribution functions p(r) analysis. The experimental data of TPPS(4) at pH 4.0 showed well-defined oscillations characteristic of large aggregates in contrast to the SAXS curve of 5 mM TPPS(4) at pH 9.0, where both a significant decrease in the intensity and the disappearance of the oscillation peaks suggest the dissociation of the aggregate. A 340-A long "hollow" cylinder with shell thickness of 20 A, compatible to the porphyrin molecule dimension, represents well the scattering curve of the aggregates at pH 4.0. According to the fitting parameters, 26 porphyrin molecules self-associate into a ringlike configuration in the plane of the cylinder cross-section. The total number of porphyrin molecules in the whole aggregate was also estimated as approximately 3000. The model compatible to SAXS data of a hollow cylinder with J-aggregation in the cross-section and H-aggregation (columnar stacking) between the cylinder layers is consistent with optical absorption spectroscopic data both in the literature and obtained in this work.


Assuntos
Cristalização/métodos , Cristalografia por Raios X/métodos , Modelos Moleculares , Porfirinas/química , Água/química , Simulação por Computador , Concentração de Íons de Hidrogênio , Substâncias Macromoleculares , Conformação Molecular , Polímeros/síntese química , Porfirinas/síntese química , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA