Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
PLoS Biol ; 15(3): e2001882, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28323820

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing. Using ribosome profiling, we demonstrate that PF-06446846 is highly selective for the inhibition of PCSK9 translation. The mechanism of action employed by PF-06446846 reveals a previously unexpected tunability of the human ribosome that allows small molecules to specifically block translation of individual transcripts.


Assuntos
Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Animais , Linhagem Celular , Sistema Livre de Células , Colesterol/sangue , Escherichia coli/genética , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Masculino , Espectrometria de Massas , Terapia de Alvo Molecular , Pró-Proteína Convertase 9/sangue , Pró-Proteína Convertase 9/genética , Biossíntese de Proteínas/fisiologia , Coelhos , Ratos , Ratos Sprague-Dawley , Ribossomos/metabolismo , Ribossomos/fisiologia
3.
Proc Natl Acad Sci U S A ; 112(12): E1414-22, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775568

RESUMO

Phosphodiesterase 4 (PDE4) is an essential contributor to intracellular signaling and an important drug target. The four members of this enzyme family (PDE4A to -D) are functional dimers in which each subunit contains two upstream conserved regions (UCR), UCR1 and -2, which precede the C-terminal catalytic domain. Alternative promoters, transcriptional start sites, and mRNA splicing lead to the existence of over 25 variants of PDE4, broadly classified as long, short, and supershort forms. We report the X-ray crystal structure of long form PDE4B containing UCR1, UCR2, and the catalytic domain, crystallized as a dimer in which a disulfide bond cross-links cysteines engineered into UCR2 and the catalytic domain. Biochemical and mass spectrometric analyses showed that the UCR2-catalytic domain interaction occurs in trans, and established that this interaction regulates the catalytic activity of PDE4. By elucidating the key structural determinants of dimerization, we show that only long forms of PDE4 can be regulated by this mechanism. The results also provide a structural basis for the long-standing observation of high- and low-affinity binding sites for the prototypic inhibitor rolipram.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Engenharia de Proteínas/métodos , Processamento Alternativo , Domínio Catalítico , Cromatografia Líquida , Códon , Cristalografia por Raios X , AMP Cíclico/metabolismo , Disostoses/enzimologia , Regulação Enzimológica da Expressão Gênica , Variação Genética , Humanos , Deficiência Intelectual/enzimologia , Espectrometria de Massas , Modelos Moleculares , Mutação , Osteocondrodisplasias/enzimologia , Fosforilação , Conformação Proteica , Multimerização Proteica , Rolipram/química , Transdução de Sinais , Difração de Raios X
4.
Rapid Commun Mass Spectrom ; 29(22): 2175-83, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26467230

RESUMO

RATIONALE: The covalent modification of proteins by toxicants, new chemical entities or drug molecules, either by metabolic activation or the presence of inherently reactive functional groups, is commonly implicated in organ toxicity and idiosyncratic reactions. In efforts to better prosecute protein modifications, we investigated a tag-free technique capable of detecting protein-small molecule adducts based solely on the collision-induced dissociation (CID) of the protein-small molecule complex. Detection of proteins using unique CID small molecule (SM) product ions would mitigate common issues associated with tagging technologies (e.g., altered reactivity/affinity of the protein-SM complex). METHODS: A Waters SYNAPT G2 mass spectrometer (MS) was operated in MS(e) mode with appropriate collision energy conditions during the MS(2) acquisition for fragmentation of protein-small molecule adducts to generate characteristic small molecule product ions. RESULTS: Ibrutinib, an acrylamide-containing small molecule drug, was shown to form adducts with rat serum albumin in ex vivo experiments and these adducts were detected by relying solely on the CID product ions generated from ibrutinib. Additionally, ibrutinib produced three CID product ions, one of which was a selective protein-ibrutinib fragment ion not produced by the compound alone. CONCLUSIONS: Herein we describe a tag-free mass spectral detection technique for protein-small molecule conjugates that relies on the unique product ion fragmentation profile of the small molecule. This technique allows the detection of macromolecular ions containing the adducted small molecule from complex protein matrices through mass range selection for the unique product ions in the CID spectra.


Assuntos
Íons/química , Espectrometria de Massas/métodos , Preparações Farmacêuticas/química , Proteínas/química , Adenina/análogos & derivados , Animais , Cromatografia Líquida de Alta Pressão , Humanos , Íons/análise , Íons/metabolismo , Modelos Químicos , Preparações Farmacêuticas/metabolismo , Piperidinas , Proteínas/análise , Proteínas/metabolismo , Pirazóis , Pirimidinas , Ratos
5.
J Biol Chem ; 288(50): 35904-12, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24187138

RESUMO

AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that senses and governs changes in the cellular energy balance represented by concentrations of AMP, ADP, and ATP. Each of its three chains (α, ß, and γ) exists as either two or three subtypes, theoretically allowing up to 12 different forms of the complete enzyme. Tissue specificity in the distribution of AMPK subtypes is believed to underpin a range of biological functions for AMPK, a central regulator of metabolic function and response. It is of particular interest for drug discovery purposes to compare AMPK isoforms that are most prevalent in human liver and muscle with isoforms present in key preclinical species. To complement immunocapture/immunodetection methods, which for AMPK are challenged by sequence similarities and difficulties of obtaining accurate relative quantitation, AMPK was captured from lysates of a range of cells and tissues using the ActivX ATP probe. This chemical probe covalently attaches desthiobiotin to one or more conserved lysyl residues in the ATP-binding sites of protein kinases, including AMPK, while also labeling a wide range of ATP-utilizing proteins. Affinity-based recovery of labeled proteins followed by gel-based fractionation of the captured sample was followed by proteomic characterization of AMPK polypeptides. In agreement with transcript-based analysis and previous indications from immunodetection, the results indicated that the predominant AMPK heterotrimer in human liver is α1ß2γ1 but that dog and rat livers mainly contain the α1ß1γ1 and α2ß1γ1 forms, respectively. Differences were not detected between the AMPK profiles of normal and diabetic human liver tissues.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteômica , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Cães , Células HEK293 , Hepatócitos/enzimologia , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , Miocárdio/enzimologia , Especificidade de Órgãos , Estrutura Quaternária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Especificidade da Espécie
6.
J Neurochem ; 128(4): 561-76, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24117733

RESUMO

Genetic mutations in leucine-rich repeat kinase 2 (LRRK2) have been linked to autosomal dominant Parkinson's disease. The most prevalent mutation, G2019S, results in enhanced LRRK2 kinase activity that potentially contributes to the etiology of Parkinson's disease. Consequently, disease progression is potentially mediated by poorly characterized phosphorylation-dependent LRRK2 substrate pathways. To address this gap in knowledge, we transduced SH-SY5Y neuroblastoma cells with LRRK2 G2019S via adenovirus, then determined quantitative changes in the phosphoproteome upon LRRK2 kinase inhibition (LRRK2-IN-1 treatment) using stable isotope labeling of amino acids in culture combined with phosphopeptide enrichment and LC-MS/MS analysis. We identified 776 phosphorylation sites that were increased or decreased at least 50% in response to LRRK2-IN-1 treatment, including sites on proteins previously known to associate with LRRK2. Bioinformatic analysis of those phosphoproteins suggested a potential role for LRRK2 kinase activity in regulating pro-inflammatory responses and neurite morphology, among other pathways. In follow-up experiments, LRRK2-IN-1 inhibited lipopolysaccharide-induced tumor necrosis factor alpha (TNFα) and C-X-C motif chemokine 10 (CXCL10) levels in astrocytes and also enhanced multiple neurite characteristics in primary neuronal cultures. However, LRRK2-IN-1 had almost identical effects in primary glial and neuronal cultures from LRRK2 knockout mice. These data suggest LRRK2-IN-1 may inhibit pathways of perceived LRRK2 pathophysiological function independently of LRRK2 highlighting the need to use multiple pharmacological tools and genetic approaches in studies determining LRRK2 function.


Assuntos
Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteômica , Adenoviridae/genética , Animais , Astrócitos/metabolismo , Células Cultivadas , Quimiocina CXCL10/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Lipopolissacarídeos/farmacologia , Espectrometria de Massas , Camundongos , Camundongos Knockout , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Fosforilação , Plasmídeos/genética , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Titânio/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
7.
Anal Biochem ; 450: 63-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24463014

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a multi-domain enzyme displaying activities of GTP hydrolase and protein threonine/serine kinase in separate domains. Mutations in both catalytic domains have been linked to the onset of Parkinson's disease, which triggered high interest in this enzyme as a potential target for drug development, particularly focusing on inhibition of the kinase activity. However, available activity assays are discontinuous, involving either radioactivity detection or coupling with antibodies. Here we describe a continuous and direct assay for LRRK2 kinase activity, combining a reported peptide sequence optimized for LRRK2 binding and an established strategy for fluorescence emission on magnesium ion chelation by phosphorylated peptides carrying an artificial amino acid. The assay was employed to evaluate apparent steady-state parameters for the wild type and two mutant forms of LRRK2 associated with Parkinson's disease as well as to probe the effects of GTP, GDP, and autophosphorylation on the kinase activity of the enzyme. Staurosporine was evaluated as an inhibitor of the wild-type enzyme. It is expected that this assay will aid in mechanistic investigations of LRRK2.


Assuntos
Ensaios Enzimáticos/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Espectrometria de Massas , Dados de Sequência Molecular , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Estaurosporina/farmacologia
8.
Protein Expr Purif ; 87(1): 27-34, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23069765

RESUMO

The T helper cell-derived cytokine interleukin-17A (IL-17A) is a variably glycosylated disulfide-linked homodimer of 34-38 kDa. Its polypeptide monomer contains one canonical N-glycosylation site at Asn68, and human recombinant IL-17A was partly N-glycosylated when expressed in human kidney (HEK293) cells as a fusion protein with a melittin signal sequence and an N-terminal hexahistidine tag. Orbitrap mass analyses of the tryptic N-glycopeptide 63-69 indicated that the N-glycosylation was of the GalNAc-terminated type characteristic of cultured kidney cells. The mass spectrum of IL-17A monomer also included peaks shifted by +948 Da from the respective masses of unglycosylated and N-glycosylated polypeptides. These were caused by unpredicted partial O-glycosylation of Thr26 with the mucin-like structure -GalNAc(-NeuNAc)-Gal-NeuNAc. Identical O-glycosylation occurred in commercially sourced recombinant IL-17A also expressed in HEK293 cells but with a different N-terminal sequence. Therefore, the kidney host cell line not only imposed its characteristic pattern of N-glycosylation on recombinant IL-17A but additionally created an O-glycosylation not known to be present in the T cell-derived cytokine. Mammalian host cell lines for recombinant protein expression generally impose their characteristic patterns of N-glycosylation on the product, but this work exemplifies how a host may also unpredictably O-glycosylate a protein that is probably not normally O-glycosylated.


Assuntos
Interleucina-17/biossíntese , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/biossíntese , Sequência de Aminoácidos , Linfócitos T CD4-Positivos/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Glicosilação , Células HEK293 , Humanos , Proteínas de Insetos/biossíntese , Proteínas de Insetos/química , Interleucina-17/química , Meliteno/biossíntese , Meliteno/química , Dados de Sequência Molecular , Peso Molecular , Mapeamento de Peptídeos , Sinais Direcionadores de Proteínas , Proteínas Recombinantes de Fusão/química , Espectrometria de Massas em Tandem
9.
Biochemistry ; 51(10): 2065-77, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22352991

RESUMO

Myeloperoxidase (MPO) is known to be inactivated and covalently modified by treatment with hydrogen peroxide and agents similar to 3-(2-ethoxypropyl)-2-thioxo-2,3-dihydro-1H-purin-6(9H)-one (1), a 254.08 Da derivative of 2-thioxanthine. Peptide mapping by liquid chromatography and mass spectrometry detected modification by 1 in a labile peptide-heme-peptide fragment of the enzyme, accompanied by a mass increase of 252.08 Da. The loss of two hydrogen atoms was consistent with mechanism-based oxidative coupling. Multistage mass spectrometry (MS(4)) of the modified fragment in an ion trap/Orbitrap spectrometer demonstrated that 1 was coupled directly to heme. Use of a 10 amu window delivered the full isotopic envelope of each precursor ion to collision-induced dissociation, preserving definitive isotopic profiles for iron-containing fragments through successive steps of multistage mass spectrometry. Iron isotope signatures and accurate mass measurements supported the structural assignments. Crystallographic analysis confirmed linkage between the methyl substituent of the heme pyrrole D ring and the sulfur atom of 1. The final orientation of 1 perpendicular to the plane of the heme ring suggested a mechanism consisting of two consecutive one-electron oxidations of 1 by MPO. Multistage mass spectrometry using stage-specific collision energies permits stepwise deconstruction of modifications of heme enzymes containing covalent links between the heme group and the polypeptide chain.


Assuntos
Heme/química , Peroxidase/química , Peroxidase/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cromatografia Líquida , Cristalografia por Raios X , Humanos , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Neutrófilos/enzimologia , Oxirredução , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos , Espectrometria de Massas em Tandem
10.
J Pharmacol Exp Ther ; 341(2): 396-409, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22328573

RESUMO

Cyclic nucleotides are critical regulators of synaptic plasticity and participate in requisite signaling cascades implicated across multiple neurotransmitter systems. Phosphodiesterase 9A (PDE9A) is a high-affinity, cGMP-specific enzyme widely expressed in the rodent central nervous system. In the current study, we observed neuronal staining with antibodies raised against PDE9A protein in human cortex, cerebellum, and subiculum. We have also developed several potent, selective, and brain-penetrant PDE9A inhibitors and used them to probe the function of PDE9A in vivo. Administration of these compounds to animals led to dose-dependent accumulation of cGMP in brain tissue and cerebrospinal fluid, producing a range of biological effects that implied functional significance for PDE9A-regulated cGMP in dopaminergic, cholinergic, and serotonergic neurotransmission and were consistent with the widespread distribution of PDE9A. In vivo effects of PDE9A inhibition included reversal of the respective disruptions of working memory by ketamine, episodic and spatial memory by scopolamine, and auditory gating by amphetamine, as well as potentiation of risperidone-induced improvements in sensorimotor gating and reversal of the stereotypic scratching response to the hallucinogenic 5-hydroxytryptamine 2A agonist mescaline. The results suggested a role for PDE9A in the regulation of monoaminergic circuitry associated with sensory processing and memory. Thus, PDE9A activity regulates neuronal cGMP signaling downstream of multiple neurotransmitter systems, and inhibition of PDE9A may provide therapeutic benefits in psychiatric and neurodegenerative diseases promoted by the dysfunction of these diverse neurotransmitter systems.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , 3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Colinérgicos/farmacologia , GMP Cíclico/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Inibidores de Fosfodiesterase/farmacologia , 3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Humanos , Macaca fascicularis , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neurotransmissores/farmacologia , Ratos , Ratos Long-Evans , Ratos Wistar , Filtro Sensorial/efeitos dos fármacos , Comportamento Estereotipado/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
11.
Drug Metab Dispos ; 40(9): 1686-97, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22645092

RESUMO

CYP3cide (PF-4981517; 1-methyl-3-[1-methyl-5-(4-methylphenyl)-1H-pyrazol-4-yl]-4-[(3S)-3-piperidin-1-ylpyrrolidin-1-yl]-1H-pyrazolo[3,4-d]pyrimidine) is a potent, efficient, and specific time-dependent inactivator of human CYP3A4. When investigating its inhibitory properties, an extreme metabolic inactivation efficiency (k(inact)/K(I)) of 3300 to 3800 ml · min⁻¹ · µmol⁻¹ was observed using human liver microsomes from donors of nonfunctioning CYP3A5 (CYP3A5 *3/*3). This observed efficiency equated to an apparent K(I) between 420 and 480 nM with a maximal inactivation rate (k(inact)) equal to 1.6 min⁻¹. Similar results were achieved with testosterone, another CYP3A substrate, and other sources of the CYP3A4 enzyme. To further illustrate the abilities of CYP3cide, its partition ratio of inactivation was determined with recombinant CYP3A4. These studies produced a partition ratio approaching unity, thus underscoring the inactivation capacity of CYP3cide. When CYP3cide was tested at a concentration and preincubation time to completely inhibit CYP3A4 in a library of genotyped polymorphic CYP3A5 microsomes, the correlation of the remaining midazolam 1'-hydroxylase activity to CYP3A5 abundance was significant (R² value equal to 0.51, p value of <0.0001). The work presented here supports these findings by fully characterizing the inhibitory properties and exploring CYP3cide's mechanism of action. To aid the researcher, multiple commercially available sources of CYP3cide were established, and a protocol was developed to quantitatively determine CYP3A4 contribution to the metabolism of an investigational compound. Through the establishment of this protocol and the evidence provided here, we believe that CYP3cide is a very useful tool for understanding the relative roles of CYP3A4 versus CYP3A5 and the impact of CYP3A5 genetic polymorphism on a compound's pharmacokinetics.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Inibidores Enzimáticos/farmacologia , Fígado/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Biotransformação , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/metabolismo , Genótipo , Ensaios de Triagem em Larga Escala , Humanos , Hidroxilação , Cinética , Fígado/enzimologia , Microssomos Hepáticos/enzimologia , Midazolam/metabolismo , Fenótipo , Polimorfismo Genético , Pirazóis/metabolismo , Pirimidinas/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Especificidade por Substrato , Tacrolimo/metabolismo , Testosterona/metabolismo
12.
Nat Struct Mol Biol ; 14(5): 413-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17435765

RESUMO

Proprotein convertase subtilisin kexin type 9 (PCSK9) lowers the abundance of surface low-density lipoprotein (LDL) receptor through an undefined mechanism. The structure of human PCSK9 shows the subtilisin-like catalytic site blocked by the prodomain in a noncovalent complex and inaccessible to exogenous ligands, and that the C-terminal domain has a novel fold. Biosensor studies show that PCSK9 binds the extracellular domain of LDL receptor with K(d) = 170 nM at the neutral pH of plasma, but with a K(d) as low as 1 nM at the acidic pH of endosomes. The D374Y gain-of-function mutant, associated with hypercholesterolemia and early-onset cardiovascular disease, binds the receptor 25 times more tightly than wild-type PCSK9 at neutral pH and remains exclusively in a high-affinity complex at the acidic pH. PCSK9 may diminish LDL receptors by a mechanism that requires direct binding but not necessarily receptor proteolysis.


Assuntos
Hipercolesterolemia/genética , Mutação de Sentido Incorreto/fisiologia , Serina Endopeptidases/metabolismo , Sítios de Ligação , Humanos , Concentração de Íons de Hidrogênio , Hipercolesterolemia/etiologia , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Ligação Proteica/genética , Conformação Proteica , Receptores de LDL/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética
13.
Nat Struct Mol Biol ; 14(2): 106-13, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17237796

RESUMO

Cholesteryl ester transfer protein (CETP) shuttles various lipids between lipoproteins, resulting in the net transfer of cholesteryl esters from atheroprotective, high-density lipoproteins (HDL) to atherogenic, lower-density species. Inhibition of CETP raises HDL cholesterol and may potentially be used to treat cardiovascular disease. Here we describe the structure of CETP at 2.2-A resolution, revealing a 60-A-long tunnel filled with two hydrophobic cholesteryl esters and plugged by an amphiphilic phosphatidylcholine at each end. The two tunnel openings are large enough to allow lipid access, which is aided by a flexible helix and possibly also by a mobile flap. The curvature of the concave surface of CETP matches the radius of curvature of HDL particles, and potential conformational changes may occur to accommodate larger lipoprotein particles. Point mutations blocking the middle of the tunnel abolish lipid-transfer activities, suggesting that neutral lipids pass through this continuous tunnel.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/química , Ésteres do Colesterol/química , Modelos Moleculares , Fosfatidilcolinas/química , Triglicerídeos/química , Animais , Sítios de Ligação , Células CHO , Proteínas de Transferência de Ésteres de Colesterol/genética , Cricetinae , Cricetulus , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Mutação Puntual , Ligação Proteica , Conformação Proteica
14.
J Am Chem Soc ; 133(50): 20536-45, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22050378

RESUMO

Multi-drug-resistant forms of the Gram-negative pathogen Acinetobacter baumannii are an emerging threat to human health and further complicate the general problem of treating serious bacterial infections. Meeting this challenge requires an improved understanding of the relationships between the structures of major therapeutic targets in this organism and the activity levels exhibited against it by different antibiotics. Here we report the first crystal structures of A. baumannii penicillin-binding proteins (PBPs) covalently inactivated by four ß-lactam antibiotics. We also relate the results to kinetic, biophysical, and computational data. The structure of the class A protein PBP1a was solved in apo form and for its covalent conjugates with benzyl penicillin, imipenem, aztreonam, and the siderophore-conjugated monocarbam MC-1. It included a novel domain genetically spliced into a surface loop of the transpeptidase domain that contains three conserved loops. Also reported here is the first high-resolution structure of the A. baumannii class B enzyme PBP3 in apo form. Comparison of this structure with that of MC-1-derivatized PBP3 of Pseudomonas aeruginosa identified differences between these orthologous proteins in A. baumannii and P. aeruginosa. Thermodynamic analyses indicated that desolvation effects in the PBP3 ligand-binding sites contributed significantly to the thermal stability of the enzyme-antibiotic covalent complexes. Across a significant range of values, they correlated well with results from studies of inactivation kinetics and the protein structures. The structural, biophysical, and computational data help rationalize differences in the functional performance of antibiotics against different protein targets and can be used to guide the design of future agents.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , Acinetobacter baumannii/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Cristalização , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular
15.
Protein Expr Purif ; 76(1): 72-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20888915

RESUMO

When the 34 kDa kinase domain of human spleen tyrosine kinase (Syk-KD) was expressed as a C-terminally His-tagged protein in baculovirus-infected Sf-21 insect cells, the purified protein included two forms that migrated slightly differently in SDS-polyacrylamide gel electrophoresis. Intact mass analysis and LC-MS/MS peptide mapping showed that the major and faster-migrating product had the intended amino-acid sequence and 0-6 phosphorylations. This material accounted for about 95% of the purified protein. The minor product was Syk-KD with a 26 amino-acid N-terminal extension. The result suggested the existence of an upstream alternative site for the initiation of translation, and this proved to be an ACG codon derived from the pBacPAK9 vector used to express Syk-KD. The ACG codon was preceded and followed by Kozak-type sequence elements (a purine in the -3 position and a G in the +4 position) that would have enhanced the viability of initiation at ACG. The initiating amino-acid residue was Met for both minor and major products, and both forms of the protein were α-N-acetylated. For the minor product, protein intact mass analysis and peptide mapping both gave results in agreement with the sequence predicted from the DNA. A similar result with the same underlying cause was obtained with insect cell expression of full-length Syk. It appears that similar results are possible whenever this vector is used.


Assuntos
Proteínas Recombinantes de Fusão/biossíntese , Spodoptera/metabolismo , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Sequência de Bases , Linhagem Celular , Códon de Iniciação , Vetores Genéticos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Dados de Sequência Molecular , Mapeamento de Peptídeos , Biossíntese de Proteínas , Proteínas Tirosina Quinases/biossíntese , Proteínas Tirosina Quinases/química , Proteínas Recombinantes de Fusão/química , Análise de Sequência de Proteína , Spodoptera/genética , Quinase Syk
16.
J Pharmacol Exp Ther ; 334(1): 269-77, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20363853

RESUMO

PF-3084014 [(S)-2-((S)-5,7-difluoro-1,2,3,4-tetrahydronaphthalen-3-ylamino)-N-(1-(2-methyl-1-(neopentylamino)propan-2-yl)-1H-imidazol-4-yl)pentanamide] is a novel gamma-secretase inhibitor that reduces amyloid-beta (Abeta) production with an in vitro IC(50) of 1.2 nM (whole-cell assay) to 6.2 nM (cell-free assay). This compound inhibits Notch-related T- and B-cell maturation in an in vitro thymocyte assay with an EC(50) of 2.1 microM. A single acute dose showed dose-dependent reduction in brain, cerebrospinal fluid (CSF), and plasma Abeta in Tg2576 mice as measured by enzyme-linked immunosorbent assay and immunoprecipitation (IP)/mass spectrometry (MS). Guinea pigs were dosed with PF-3084014 for 5 days via osmotic minipump at 0.03 to 3 mg/kg/day and exhibited dose-dependent reduction in brain, CSF, and plasma Abeta. To further characterize Abeta dynamics in brain, CSF, and plasma in relation to drug exposure and Notch-related toxicities, guinea pigs were dosed with 0.03 to 10 mg/kg PF-3084014, and tissues were collected at regular intervals from 0.75 to 30 h after dose. Brain, CSF, and plasma all exhibited dose-dependent reductions in Abeta, and the magnitude and duration of Abeta lowering exceeded those of the reductions in B-cell endpoints. Other gamma-secretase inhibitors have shown high potency at elevating Abeta in the conditioned media of whole cells and the plasma of multiple animal models and humans. Such potentiation was not observed with PF-3084014. IP/MS analysis, however, revealed dose-dependent increases in Abeta11-40 and Abeta1-43 at doses that potently inhibited Abeta1-40 and Abeta1-42. PF-3084014, like previously described gamma-secretase inhibitors, preferentially reduced Abeta1-40 relative to Abeta1-42. Potency at Abeta relative to Notch-related endpoints in vitro and in vivo suggests that a therapeutic index can be achieved with this compound.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/farmacocinética , Tetra-Hidronaftalenos/farmacologia , Tetra-Hidronaftalenos/farmacocinética , Valina/análogos & derivados , Animais , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Linhagem Celular , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/química , Escherichia coli/genética , Feminino , Cobaias , Humanos , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Baço/citologia , Baço/efeitos dos fármacos , Tetra-Hidronaftalenos/efeitos adversos , Tetra-Hidronaftalenos/química , Distribuição Tecidual , Transfecção , Valina/efeitos adversos , Valina/química , Valina/farmacocinética , Valina/farmacologia
17.
Protein Expr Purif ; 73(2): 189-97, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20451617

RESUMO

AMP-activated protein kinase (AMPK) is an energy-sensing serine/threonine protein kinase that plays a central role in whole-body energy homeostasis. AMPK is a heterotrimeric enzyme with a catalytic (alpha) subunit and two regulatory (beta and gamma) subunits. The muscle-specific AMPK heterotrimeric complex (alpha2beta2gamma3) is involved in glucose and fat metabolism in skeletal muscle and therefore has emerged as an attractive target for drug development for diabetes and metabolic syndrome. To date, expression of recombinant full-length human AMPK alpha2beta2gamma3 has not been reported. Here we describe the expression, purification and biochemical characterization of functional full-length AMPK alpha2beta2gamma3 heterotrimeric complex using an Escherichia coli expression system. All three subunits of AMPK alpha2beta2gamma3 were transcribed as a single tricistronic transcript driven by the T7 RNA polymerase promoter, allowing spontaneous formation of the heterotrimeric complex in the bacterial cytosol. The self-assembled trimeric complex was purified from the cell lysate by nickel-ion chromatography using the hexahistidine tag fused exclusively at the N-terminus of the alpha 2 domain. The un-assembled beta 2 and gamma 3 domains were removed by extensive washing of the column. Further purification of the heterotrimer was performed using size exclusion chromatography. The final yield of the recombinant AMPK alpha2beta2gamma3 complex was 1.1mg/L culture in shaker flasks. The E. coli expressed enzyme was catalytically inactive after purification, but was activated in vitro by upstream kinases such as CaMKKbeta and LKB1. The kinase activity of activated AMPK alpha2beta2gamma3 complex was significantly enhanced by AMP (an allosteric activator) but not by thienopyridone A-769662, a known small molecule activator of AMPK. Mass spectrometric characterization of recombinant AMPK alpha2beta2gamma3 showed significant heterogeneity before and after activation that could potentially hamper crystallographic studies of this complex.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Escherichia coli/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Compostos de Bifenilo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/fisiologia , Domínio Catalítico , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Escherichia coli/genética , Homeostase , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pironas/farmacologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Tiofenos/farmacologia
18.
Biochemistry ; 48(13): 2941-9, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19222187

RESUMO

Proprotein convertase subtilisin-kexin type 9 (PCSK9) binds to the low-density lipoprotein receptor (LDLR) on target cells and lowers the level of receptor by impeding its recycling. PCSK9 is self-processed to a complex of its prodomain and catalytic domain like a typical protein convertase, but it does not develop normal proteolytic activity. Instead, its propeptide remains complexed with the catalytic domain, and the C-terminal Gln152 of the prodomain occupies the active site like a substrate for peptide synthesis. To probe its latent catalytic activity, PCSK9 and its complex with the soluble LDLR extracellular domain were separately transferred into H218O, and time point samples were analyzed by peptide mapping with mass spectrometry to measure the rate and extent of incorporation of 18O into the Gln152 carboxylate. In free wild-type or D374Y mutant PCSK9, the t1/2 for exchange of 18O for both oxygens was near 5 min. This slow process progressed to completion, with the distribution of oxygen isotopes in the Gln152 carboxylate finally matching that in solvent. In contrast, exchange reached its final state in <30 s in LDLR-complexed D374Y mutant PCSK9, but approximately 40% of the molecules gave data indicating the presence of only one 18O atom in Gln152. With support from further experiments, this was attributed to hydrolysis of acylenzyme in H216O during preparations for digestion and indicated that PCSK9 complexed with LDLR contains approximately 40% intramolecular acylenzyme at equilibrium. The synthetic EGF-A domain of LDLR induced similar effects as the full-length receptor. The data suggest the existence of distinct conformational states in free and receptor-bound PCSK9.


Assuntos
Biocatálise , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Glutamina/metabolismo , Humanos , Isótopos , Espectrometria de Massas , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Serina Endopeptidases/química , Ciclização de Substratos
19.
J Pharmacol Exp Ther ; 326(3): 801-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18577702

RESUMO

Sterol regulatory element-binding proteins (SREBPs) are major transcriptional regulators of cholesterol, fatty acid, and glucose metabolism. Genetic disruption of SREBP activity reduces plasma and liver levels of cholesterol and triglycerides and insulin-stimulated lipogenesis, suggesting that SREBP is a viable target for pharmacological intervention. The proprotein convertase SREBP site 1 protease (S1P) is an important posttranscriptional regulator of SREBP activation. This report demonstrates that 10 microM PF-429242 (Bioorg Med Chem Lett 17:4411-4414, 2007), a recently described reversible, competitive aminopyrrolidineamide inhibitor of S1P, inhibits endogenous SREBP processing in Chinese hamster ovary cells. The same compound also down-regulates the signal from an SRE-luciferase reporter gene in human embryonic kidney 293 cells and the expression of endogenous SREBP target genes in cultured HepG2 cells. In HepG2 cells, PF-429242 inhibited cholesterol synthesis, with an IC(50) of 0.5 microM. In mice treated with PF-429242 for 24 h, the expression of hepatic SREBP target genes was suppressed, and the hepatic rates of cholesterol and fatty acid synthesis were reduced. Taken together, these data establish that small-molecule S1P inhibitors are capable of reducing cholesterol and fatty acid synthesis in vivo and, therefore, represent a potential new class of therapeutic agents for dyslipidemia and for a variety of cardiometabolic risk factors associated with diabetes, obesity, and the metabolic syndrome.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Lipogênese/fisiologia , Pró-Proteína Convertases/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas de Ligação a Elemento Regulador de Esterol/antagonistas & inibidores , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Células CHO , Linhagem Celular , Células Cultivadas , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipogênese/efeitos dos fármacos , Masculino , Camundongos , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Inibidores de Proteases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/biossíntese
20.
Bioconjug Chem ; 19(8): 1604-13, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18646836

RESUMO

Cholesteryl ester transfer protein (CETP) transfers neutral lipids between different types of plasma lipoprotein. Inhibitors of CETP elevate the fraction of plasma cholesterol associated with high-density lipoproteins and are being developed as new agents for the prevention and treatment of cardiovascular disease. The molecular basis of their function is not yet fully understood. To aid in the study of inhibitor interactions with CETP, a torcetrapib-related compound was coupled to different biotin-terminated spacer groups, and the binding of CETP to the streptavidin-bound conjugates was monitored on agarose beads and in a surface plasmon resonance biosensor. CETP binding was poor with a 2.0 nm spacer arm, but efficient with polyethyleneglycol spacers of 3.5 or 4.6 nm. The conjugate based on a 4.6 nm spacer was used for further biosensor experiments. Soluble inhibitor blocked the binding of CETP to the immobilized drug, as did preincubation with a disulfide-containing covalent inhibitor. To provide a first estimate of the binding site for torcetrapib-like inhibitors, CETP was modified with a disulfide-containing agent that modifies Cys-13 of CETP. Mass spectrometry of the modified protein indicated that a single half-molecule of the disulfide was covalently bound to CETP, and peptide mapping after digestion with pepsin confirmed previous reports based on mutagenesis that Cys-13 was the site of modification. Modified CETP was unable to bind to the biosensor-mounted torcetrapib analog, indicating that the binding site on CETP for torcetrapib is in the lipid-binding pocket near the N-terminus of the protein. The crystal structure of CETP shows that the sulfhydryl group of Cys-13 resides at the bottom of this pocket.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Marcadores de Afinidade/química , Marcadores de Afinidade/metabolismo , Sítios de Ligação , Ligação Competitiva , Biotina/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/química , Proteínas de Transferência de Ésteres de Colesterol/genética , Ligantes , Mutagênese , Ligação Proteica , Quinolinas/química , Quinolinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA