Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Sens J ; 20(21): 12684-12690, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36275194

RESUMO

Zero-field optically-pumped magnetometers are a room-temperature alternative to traditionally used super-conducting sensors detecting extremely weak magnetic fields. They offer certain advantages such as small size, flexible arrangement, reduced sensitivity in ambient fields offering the possibility for telemetry. Devices based on microfabricated technology are nowadays commercially available. The limited dynamic range and vector nature of the zero-field magnetometers restricts their use to environments heavily shielded against magnetic noise. Total-field (or scalar) magnetometers based on microfabricated cells have demonstrated subpicotesla sensitivities only recently. This work demonstrates a scalar magnetometer based on a single optical axis, 18 (3 × 3 × 2) mm3 microfabricated cell, with a noise floor of 70 fT/Hz1/2. The magnetometer operates in a large static magnetic field range, and and is based on a simple optical and electronic configuration that allows the development of dense sensor arrays. Different methods of magnetometer interrogation are demonstrated. The features of this magnetic field sensor hold promise for applications of miniature sensors in nonzero field environments such as unshielded magnetoencephalography (MEG) and brain-computer interfaces (BCI).

2.
J Opt Soc Am B ; 34(7): 1429-1434, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29805196

RESUMO

A scalar magnetic field sensor based on a millimeter-size 87Rb vapor cell is described. The magnetometer uses nearly copropagating pump and probe laser beams, amplitude modulation of the pump beam, and detection through monitoring the polarization rotation of the detuned probe beam. The circularly polarized pump laser resonantly drives a spin precession in the alkali atoms at the Larmor frequency. A modulation signal on the probe laser polarization is detected with a lock-in amplifier. Since the Larmor precession is driven all-optically, potential cross talk between sensors is minimized. And since the pump light is turned off during most of the precession cycle, large offsets of the resonance, typically present in a single-beam Bell-Bloom scheme, are avoided. At the same time, relatively high sensitivities can be reached even in millimeter-size vapor cells: The magnetometer achieves a sensitivity of 1 pT/Hz1/2 in a sensitive volume of 16 mm3, limited by environmental noise. When a gradiometer configuration is used to cancel the environmental noise, the magnetometer sensitivity reaches 300 fT/Hz1/2. We systematically study the dependence of the magnetometer performance on the optical duty cycles of the pump light and find that better performance is achieved with shorter duty cycles, with the highest values measured at 1.25% duty cycle.

3.
Rev Sci Instrum ; 93(5): 053004, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649773

RESUMO

The radio frequency telecommunication at a kilohertz range through an electrically conductive medium is often impeded by the strong reflection and absorption at the interface. The polarization helicity of the magnetic field can be modulated/demodulated to provide a new communication protocol to potentiality circumvent these issues. Here, a miniature magnetic quantum receiver, capable of simultaneously discriminating the two possible helicities of a magnetic field, is presented. The core physics package constitutes two optically pumped atomic magnetometers. It is shown that a data rate of 500 bits/s with a carrier frequency of 2 kHz can be efficiently demodulated in an unshielded environment, paving a promising route for the future of radio frequency communication through a conductive barrier.

4.
Phys Med Biol ; 66(17)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34325403

RESUMO

Scalar optically-pumped magnetometers (OPMs) are being developed in small packages with high sensitivities. The high common-mode rejection ratio of these sensors allows for detection of very small signals in the presence of large background fields making them ideally suited for brain imaging applications in unshielded environments. Despite a flurry of activity around the topic, questions remain concerning how well a dipolar source can be localized under such conditions, especially when using few sensors. In this paper, we investigate the source localization capabilities using an array of scalar OPMs in the presence of a large background field while varying dipole strength, sensor count, and forward model accuracy. We also consider localization performance as the orientation angle of the background field changes. Our results are validated experimentally through accurate localization using a phantom virtual array mimicking a current dipole in a conducting sphere in a large background field. Our results are intended to give researchers a general sense of the capabilities and limitations of scalar OPMs for magnetoencephalography systems.


Assuntos
Magnetoencefalografia , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3420-3423, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018738

RESUMO

Brain Computer Interfaces (BCIs) allow individuals to control devices, machines and prostheses with their thoughts. Most feasibility studies with BCIs have utilized scalp electroencephalography (EEG), due to it being accessible, noninvasive, and portable. While BCIs have been studied with magnetoencephalography (MEG), the modality has limited applications due to the large immobile hardware. Here we propose that room-temperature, optically-pumped magnetometers (OPMs) can potentially serve a portable modality that can be used for BCIs. OPMs have the added advantage that low-frequency neuromagnetic fields are not affected by volume conduction, which is known to distort EEG signals. In this feasibility study, we tested an OPM system with a real-time BCI where able bodied participants controlled a cursor to reach two targets. This BCI system used alpha and beta-band power modulations associated with hand movements. Our preliminary results show significant alpha and beta-band desynchronization due to movement, as found in previous literature.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Mãos , Humanos , Magnetoencefalografia , Movimento
6.
Artigo em Inglês | MEDLINE | ID: mdl-28103194

RESUMO

We describe an optical frequency stabilization scheme of a microwave oscillator that is used for the interrogation of primary cesium fountain clocks. Because of its superior phase noise properties, this scheme, which is based on an ultrastable laser and a femtosecond laser frequency comb, overcomes the frequency instability limitations of fountain clocks given by the previously utilized quartz-oscillator-based frequency synthesis. The presented scheme combines the transfer of the short-term frequency instability of an optical cavity and the long-term frequency instability of a hydrogen maser to the microwave oscillator and is designed to provide continuous long-term operation for extended measurement periods of several weeks. The utilization of the twofold stabilization scheme on the one hand ensures the referencing of the fountain frequency to the hydrogen maser frequency and on the other hand results in a phase noise level of the fountain interrogation signal, which enables fountain frequency instabilities at the 2.5 ×10-14 (τ/s)-1/2 level that are quantum projection noise limited.

7.
Artigo em Inglês | MEDLINE | ID: mdl-26761607

RESUMO

Coherent manipulation of atomic states is a key concept in high-precision spectroscopy and used in atomic fountain clocks and a number of optical frequency standards. Operation of these standards can involve a number of cyclic switching processes, which may induce cycle-synchronous phase excursions of the interrogation signal and thus lead to shifts in the output of the frequency standard. We have built a field-programmable gate array (FPGA)-based phase analyzer to investigate these effects and conducted measurements on two kinds of frequency standards. For the caesium fountains PTB-CSF1 and PTB-CSF2, we were able to exclude phase variations of the microwave source at the level of a few microradians, corresponding to relative frequency shifts of less than [Formula: see text]. In the optical domain, we investigated phase variations in PTB's Yb (+) optical frequency standard and made detailed measurements of acousto-optic modulator (AOM) chirps and their scaling with duty cycle and driving power. We ascertained that cycle-synchronous as well as long-term phase excursion do not cause frequency shifts larger than [Formula: see text].

8.
Phys Rev Lett ; 91(7): 072501, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12935011

RESUMO

We describe our high-resolution measurements of the 133Cs 6p (2)P(3/2) state hyperfine structure. An optically narrowed diode laser excites perpendicularly a highly collimated atomic beam. The spectra are calibrated with a stable reference diode laser using a rf locking scheme allowing us to determine the splittings with an accuracy of < or =2 kHz, an order of magnitude better than previous results. The magnetic dipole a, electric quadrupole b, and magnetic octupole c hyperfine coupling constants are determined. The values we obtained are a=50.288 27(23) MHz, b=-0.4934(17) MHz, and c=0.56(7) kHz. This work represents the first observation of the magnetic octupole moment of the cesium nucleus. We carry out atomic-structure calculations and determine the nuclear electric quadrupole moment Q= -3.55(4) mb and nuclear magnetic octupole moment Omega=0.82(10) b x mu(N).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA