RESUMO
AIMS: This work aimed to determine the occurrence, virulence, antibiogram, carbapenem resistance genes and susceptibility to disinfectants of Pseudomonas aeruginosa isolated from animals, environment and workers in intensive farms. METHODS AND RESULTS: A total of 610 samples from intensive beef cattle and sheep farms in Kafr El Sheikh Governorate, Egypt were screened for the presence of P. aeruginosa using bacteriological assays. The isolates were characterized by PCR and tested for susceptibility to antibiotics using disk diffusion method and disinfectants by quantitative suspension test. In all, 60 P. aeruginosa isolates were recovered in this study and all isolates harboured at least one of the virulence genes tested. Human P. aeruginosa isolates were highly resistant to cephalosporins, fluroquinolones, aminoglycosides, carbapenems and penicillins+ß-lactamase inhibitors than non-human isolates. Colistin resistance was higher in non-human than human P. aeruginosa isolates, whereas low resistance to aztreonam was observed in non-human and human isolates. Carbapenem-resistant P. aeruginosa (CRPA) strains were recovered from workers (56.5%), sheep (8.3%) and cattle (8.3%). All CRPA harboured at least one of the carbapenem resistance genes tested and most of them showed multidrug resistance (MDR) or extensive drug resistance (XDR) phenotypes. Glutaraldehyde 1% and hydrogen peroxide 3% eliminated P. aeruginosa completely in the absence and presence of organic matter within short contact time compared with other disinfectants. CONCLUSIONS: This study reported the occurrence of CRPA in animals and workers in intensive farms. Glutaraldehyde and hydrogen peroxide were the most effective disinfectants against P. aeruginosa. SIGNIFICANCE AND IMPACT OF THE STUDY: The occurrence of CRPA in intensive livestock farms is a serious challenge that threatens animal and human health and increases the risk of P. aeruginosa infection in the community. Therefore, it is vital to control the spread of CRPA by banning or restricting the use of antibiotics and applying proper cleaning and disinfection protocols in livestock farms.
Assuntos
Desinfetantes , Infecções por Pseudomonas , Animais , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Bovinos , Desinfetantes/farmacologia , Fazendas , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/veterinária , Pseudomonas aeruginosa/genética , Saúde Pública , Ovinos , Virulência , beta-LactamasesRESUMO
COVID-19 caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan (Hubei province, China) during late 2019. It has spread across the globe affecting nearly 21 million people with a toll of 0.75 million deaths and restricting the movement of most of the world population during the past 6 months. COVID-19 became the leading health, economic, and humanitarian challenge of the twenty-first century. In addition to the considerable COVID-19 cases, hospitalizations, and deaths in humans, several cases of SARS-CoV-2 infections in animal hosts (dog, cat, tiger, lion, and mink) have been reported. Thus, the concern of pet owners is increasing. Moreover, the dynamics of the disease requires further explanation, mainly concerning the transmission of the virus from humans to animals and vice versa. Therefore, this study aimed to gather information about the reported cases of COVID-19 transmission in animals through a literary review of works published in scientific journals and perform genomic and phylogenetic analyses of SARS-CoV-2 isolated from animal hosts. Although many instances of transmission of the SARS-CoV-2 have been reported, caution and further studies are necessary to avoid the occurrence of maltreatment in animals, and to achieve a better understanding of the dynamics of the disease in the environment, humans, and animals. Future research in the animal-human interface can help formulate and implement preventive measures to combat the further transmission of COVID-19.
Assuntos
Betacoronavirus , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Pneumonia Viral/veterinária , Zoonoses/transmissão , Criação de Animais Domésticos , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , Betacoronavirus/patogenicidade , COVID-19 , Gatos , Coronavirus/classificação , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Cães , Genoma Viral , Humanos , Vison/virologia , Países Baixos/epidemiologia , Exposição Ocupacional , Animais de Estimação/virologia , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Pesquisa Translacional Biomédica , Zoonoses/epidemiologiaRESUMO
Since the outbreak of SARS-CoV-2 was first identified in 2019, it has been reported that the virus could infect a variety of animals either naturally or experimentally. This review discusses the occurrence SARS-CoV-2 in dogs and cats and the role of these animals in transmitting coronavirus disease 2019 (COVID-19) to their owners. The data were collected from epidemiological studies and case reports that focused on studying the occurrence of SARS-CoV-2 in pet animals and their owners. Epidemiological studies and case reports indicate that dogs and cats are infected with SARS-CoV-2 either naturally or experimentally; however, the global number of naturally infected animals is far lower than the number of people who have COVID-19. These studies demonstrate that pet animals acquire the infection from direct contact with COVID-19-infected owners. Currently, there are no studies reporting that dogs and cats can transmit SARS-CoV-2 to other animals and humans, under natural conditions. The emergence of SARS-CoV-2 infection in companion animals (dogs and cats) in different countries worldwide raises concerns that pets are at higher risk for spreading and transmitting SARS-CoV-2 to humans and other animals, which poses a hazard to the public health. Therefore, investigating the role of dogs and cats in the transmission and epidemiology of SARS-CoV-2 will help us to design and implement appropriate preventive measures against the further transmission of SARS-CoV-2.
Assuntos
COVID-19 , Doenças do Gato , Doenças do Cão , Animais , Humanos , Gatos , Cães , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/veterinária , Saúde Pública , Doenças do Gato/epidemiologia , Doenças do Cão/epidemiologiaRESUMO
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic bacterium that is widely distributed in aquatic environments and causes major economic losses in fish and public health hazards.This study aimed to identify the occurrence of P. aeruginosa in samples collected from fish and fish handlers, and to investigate the antimicrobial susceptibility, virulence determinants, and biofilm genes of P. aeruginosa isolates. A total of 276 samples were cross-sectionally collected from Nile tilapia (53), Golden grey mullet (52), Mediterranean horse mackerel (50), Striped red mullet (71), and fish handlers (50) at five different retail fish markets in Damietta Governorate, Egypt. Pseudomonas species (spp.) were biochemically identified in 57.9% of the total examined samples. Peudomonas aeruginosa were the most prevalent species isolated from the fish and human samples via PCR technique. Peudomonas aeruginosa isolates exhibited full resistance (100%) to tobramycin (TOB), gentamicin (CN), and colistin (CL), with a high level of susceptibility (88.5%) to imipenem (IPM) using the disk diffusion method. Most P. aeruginosa isolates (84.6%) exhibited drug resistance, with 61.5% were multidrug resistance (MDR) and 23.1% were extensive drug resistance (XDR). Most isolates had at least four virulence-associated genes (lasB, toxA, exoU, and oprL) and three biofilm genes (psIA, peIA, and lasR) by using uniplex PCR. The lasI, and rhlR Quorum Sensing (QS) genes were identified in 84.6% and 61.5% in the examined P. aeruginosa isolates, respectively. The highest mortality rate in Nile tilapia experimentally infected with P. aeruginosa isolate encoding most of virulent genes. Multivariate analyses revealed high heterogeneity among the examined isolates. This study revealed the emergence of virulent and drug resistant P. aeruginosa isolates in fish, poses high risks to consumers and food. Thus, strict hygienic measures should be considered when catching, handling, and storing fish, in addition to the routine application of antimicrobial susceptibility testing.
Assuntos
Antibacterianos , Biofilmes , Farmacorresistência Bacteriana Múltipla , Peixes , Pseudomonas aeruginosa , Fatores de Virulência , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Animais , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Fatores de Virulência/genética , Peixes/microbiologia , Antibacterianos/farmacologia , Egito , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/veterinária , Virulência/genética , Testes de Sensibilidade Microbiana , Doenças dos Peixes/microbiologia , Estudos Transversais , Gentamicinas/farmacologiaRESUMO
OBJECTIVE: The emergence of SARS-CoV-2 infection in dogs and cats in different countries worldwide raises concerns that pets are at a higher risk for spreading or transmitting of SARS-CoV-2 to humans and other pets and increased the research works about the zoonotic aspects and natural routes of infection in companion animals. The current study aimed to detect the SARS-CoV-2 in household dogs and cats living with COVID-19 positive owners. METHODS: Deep oropharyngeal and rectal swabs were collected from 30 household pets (20 cats and 10 dogs) living with COVID-19 positive owners from April 2021 to 2022 in Kerman, Iran. All dogs' and cats' samples were tested by real-time reverse transcription polymerase chain reaction for detection of SARS-CoV-2. RESULTS: Two household cats out of 20 examined (10%) were positive for SARS-CoV-2, whereas none of the examined dogs were positive for SARS-CoV-2. The two cats positive for SARS-CoV-2 were symptomatic and suffered from severe anorexia with maximum contact with their infected owners. CONCLUSION: This study reported the presence of SARS-CoV-2 in household cats in close contact with COVID-19 positive owners during the circulation of new SARS-CoV-2 variants (Delta and Omicron) in Iran and suggested that the transmission may have occurred from owners to their cats. Therefore, infected owners should eagerly limit close contact with their pets during COVID-19 illness.
Assuntos
COVID-19 , Doenças do Gato , Doenças do Cão , Humanos , Animais , Gatos , Cães , COVID-19/epidemiologia , COVID-19/veterinária , SARS-CoV-2 , Doenças do Gato/diagnóstico , Doenças do Gato/epidemiologia , Irã (Geográfico)/epidemiologia , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologiaRESUMO
This review was focused on global data analysis and risk factors associated with morbidity and mortality of coronavirus disease 2019 from different countries, including Bangladesh, Brazil, China, Central Eastern Europe, Egypt, India, Iran, Pakistan, and South Asia, Africa, Turkey and UAE. Male showed higher confirmed and death cases compared to females in most of the countries. In addition, the case fatality ratio (CFR) for males was higher than for females. This gender variation in COVID-19 cases may be due to males' cultural activities, but similar variations in the number of COVID-19 affected males and females globally. Variations in the immune system can illustrate this divergent risk comparatively higher in males than females. The female immune system may have an edge to detect pathogens slightly earlier. In addition, women show comparatively higher innate and adaptive immune responses than men, which might be explained by the high density of immune-related genes in the X chromosome. Furthermore, SARS-CoV-2 viruses use angiotensin-converting enzyme 2 (ACE2) to enter the host cell, and men contain higher ACE2 than females. Therefore, males may be more vulnerable to COVID-19 than females. In addition, smoking habit also makes men susceptible to COVID-19. Considering the age-wise distribution, children and older adults were less infected than other age groups and the death rate. On the contrary, more death in the older group may be associated with less immune system function. In addition, most of these group have comorbidities like diabetes, high pressure, low lungs and kidney function, and other chronic diseases. Due to the substantial economic losses and the numerous infected people and deaths, research examining the features of the COVID-19 epidemic is essential to gain insight into mitigating its impact in the future and preparedness for any future epidemics.
RESUMO
The emergence of extensive drug-resistant (XDR) Salmonella in livestock animals especially in poultry represents a serious public health and therapeutic challenge. Despite the wealth of information available on Salmonella resistance to various antimicrobials, there have been limited data on the genetic determinants of XDR Salmonella exhibiting co-resistance to ciprofloxacin (CIP) and tigecycline (TIG). This study aimed to determine the prevalence and serotype diversity of XDR Salmonella in poultry flocks and contact workers and to elucidate the genetic determinants involved in the co-resistance to CIP and TIG. Herein, 115 Salmonella enterica isolates of 35 serotypes were identified from sampled poultry (100/1210, 8.26%) and humans (15/375, 4.00%), with the most frequent serotype being Salmonella Typhimurium (26.96%). Twenty-nine (25.22%) Salmonella enterica isolates exhibited XDR patterns; 25 out of them (86.21%) showed CIP/TIG co-resistance. Exposure of CIP- and TIG-resistant isolates to the carbonyl cyanide 3-chlorophenylhydrazone (CCCP) efflux pump inhibitor resulted in an obvious reduction in their minimum inhibitory concentrations (MICs) values and restored the susceptibility to CIP and TIG in 17.24% (5/29) and 92% (23/25) of the isolates, respectively. Molecular analysis revealed that 89.66% of the isolates contained two to six plasmid-mediated quinolone resistance genes with the predominance of qepA gene (89.66%). Mutations in the gyrA gene were detected at codon S83 (34.62%) or D87 (30.77%) or both (34.62%) in 89.66% of XDR Salmonella. The tet(A) and tet(X4) genes were detected in 100% and 3.45% of the XDR isolates, respectively. Twelve TIG-resistant XDR Salmonella had point mutations at codons 120, 121, and 181 in the tet(A) interdomain loop region. All CIP and TIG co-resistant XDR Salmonella overexpressed ramA gene; 17 (68%) out of them harbored 4-bp deletion in the ramR binding region (T-288/A-285). However, four CIP/TIG co-resistant isolates overexpressed the oqxB gene. In conclusion, the emergence of XDR S. enterica exhibiting CIP/TIG co-resistance in poultry and humans with no previous exposure to TIG warrants an urgent need to reduce the unnecessary antimicrobial use in poultry farms in Egypt.
RESUMO
A major increase of bacterial resistance to colistin, a last-resort treatment for severe infections, was observed globally. Using colistin in livestock rearing is believed to be the ground of mobilized colistin resistance (mcr) gene circulation and is of crucial concern to public health. This study aimed to determine the frequency and virulence characteristics of colistin-resistant Gram-negative bacteria from the milk of mastitic cows and raw unpasteurized milk in Egypt. One hundred and seventeen strains belonging to Enterobacteriaceae (n = 90), Pseudomonas aeruginosa (n = 10), and Aeromonas hydrophila (n = 17) were screened for colistin resistance by antimicrobial susceptibility testing. The genetic characteristics of colistin-resistant strains were investigated for mcr-1-9 genes, phylogenetic groups, and virulence genes. Moreover, we evaluated four commonly used biocides in dairy farms for teat disinfection toward colistin-resistant strains. Multidrug-resistant (MDR) and extensive drug-resistant (XDR) phenotypes were detected in 82.91% (97/117) and 3.42% (4/117) of the isolates, respectively. Of the 117 tested isolates, 61 (52.14%) were colistin resistant (MIC >2 mg/L), distributed as 24/70 (34.29%) from clinical mastitis, 10/11 (90.91%) from subclinical mastitis, and 27/36 (75%) from raw milk. Of these 61 colistin-resistant isolates, 47 (19 from clinical mastitis, 8 from subclinical mastitis, and 20 from raw milk) harbored plasmid-borne mcr genes. The mcr-1 gene was identified in 31.91%, mcr-2 in 29.79%, mcr-3 in 34.04%, and each of mcr-4 and mcr-7 in 2.13% of the colistin-resistant isolates. Among these isolates, 42.55% (20/47) were E. coli, 21.28% (10/47) A. hydrophila, 19.12% (9/47) K. pneumoniae, and 17.02% (8/47) P. aeruginosa. This is the first report of mcr-3 and mcr-7 in P. aeruginosa. Conjugation experiments using the broth-mating technique showed successful transfer of colistin resistance to E. coli J53-recipient strain. Different combinations of virulence genes were observed among colistin-resistant isolates with almost all isolates harboring genes. Hydrogen peroxide has the best efficiency against all bacterial isolates even at a low concentration (10%). In conclusion, the dissemination of mobile colistin resistance mcr gene and its variants between MDR- and XDR-virulent Gram-negative isolates from dairy cattle confirms the spread of mcr genes at all levels; animals, humans, and environmental, and heralds the penetration of the last-resort antimicrobial against MDR bacteria. Consequently, a decision to ban colistin in food animals is urgently required to fight XDR and MDR bacteria.
Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Antibacterianos/farmacologia , Bovinos , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Feminino , Testes de Sensibilidade Microbiana , Leite , Filogenia , Plasmídeos/genética , Virulência/genéticaRESUMO
Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54-0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required.
RESUMO
Antimicrobial resistance profile of E. coli and Salmonella serovars isolated from diarrheic calves and handlers in Egypt is unknown due to the absence of monitoring. Therefore, this study aimed to determine the virulence, genetic and antimicrobial resistance profiles of E. coli and Salmonella serovars associated with diarrhea in calves and handlers in intensive dairy farms in Egypt. A total of 36 bacterial strains (20 E. coli and 16 Salmonella) were isolated from fecal samples of 80 diarrheic Holstein dairy calves (10 E. coli and 13 Salmonella) and hand swabs of 35 handlers (10 E. coli and 3 Salmonella) in two intensive dairy farms in Sharkia Governate in Egypt. E. coli strains belonged to six different serogroups and O114:K90 was the most prevalent serogroup (30%). However, Salmonella strains were serotyped into four different serogroups and S. Kiel was the most prevalent serotype (50%). Thirteen (65%) E. coli isolates were harbouring either stx2, eaeA and/or astA virulence-associated genes. However, stn and spvC virulence genes were detected in 2 (12.5%) and 4 (25%) of Salmonella isolates, respectively. E. coli isolates showed marked resistance to ampicillin (75%), while Salmonella strains exhibited high resistance to amikacin (100%), gentamicin (93.75%) and tobramycin (87.5%). Results of the present study showed that E. coli and Salmonella serovars isolated from diarrheic calves and handlers in intensive dairy farms in Egypt exhibited resistance to multiple classes of antimicrobials, which may pose a public health hazard. Thus, the continuous monitoring of antimicrobial resistance is necessary for both humans and veterinary medicine to decrease the economic losses caused by antimicrobial-resistant strains in animals as well as the zoonotic risk.
Assuntos
Doenças dos Bovinos/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Salmonelose Animal/microbiologia , Salmonella/genética , Animais , Antibacterianos/farmacologia , Bovinos , Diarreia/microbiologia , Diarreia/veterinária , Egito , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Fazendeiros , Variação Genética/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Virulência/genéticaRESUMO
This study aimed to investigate the prevalence of influenza A viruses in birds and humans residing in the same localities of Sharkia Province, Egypt and the risk factors' assessment in poultry farms. A total of 100 birds comprised of 50 chickens, 25 ducks and 25 wild egrets were sampled. Swab samples were collected from 65 people (50 poultry farm workers and 15 hospitalized patients). All samples were screened for the presence of influenza A viruses using isolation and molecular assays. Avian influenza viruses were only detected in chicken samples (18%) and molecularly confirmed as subtype H5. The infection rate was higher in broilers (40%) than layers (8.6%). Influenza A (H1) pdm09 virus was detected in a single human case (1.54%). All the isolated AI H5 viruses were clustered into clade (2.2.1.2) and shared a high similarity rate at nucleotides and amino acid levels. In addition, they had a multi-basic amino acid motif (ÙÙÙPQGEKRRKKR/GLFÙÙÙ) at the H5 gene cleavage site that exhibited point mutations. Chicken breed, movement of workers from one flock to another, lack of utensils' disinfection and the introduction of new birds to the farm were significant risk factors associated with highly pathogenic AI H5 virus infection in poultry farms (p ≤ 0.05). Other factors showed no significant association. The HPAI H5 viruses are still endemic in Egypt with continuous mutation. Co-circulation of these viruses in birds and pdm09 viruses in humans raises alarm for the emergence of reassortant viruses that are capable of potentiating pandemics.
Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Sequência de Aminoácidos/genética , Animais , Galinhas/virologia , Patos/virologia , Egito/epidemiologia , Fazendas , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Masculino , Aves Domésticas/virologia , Doenças das Aves Domésticas/virologia , Prevalência , Fatores de RiscoRESUMO
The ability of the small-subunit ribosomal RNA (SSU rRNA) based nested PCR and Restriction Fragment Length Polymorphism (PCR-RFLP) to identify and genotype a single Cryptosporidium oocyst isolated from bovine faecal samples was evaluated in this study. In addition, subtyping was carried out by sequencing the 60 kDa glycoprotein (gp60) gene from the same single oocyst. Faecal samples were collected from 40 pre-weaned calves (5-20 days old) from 7 dairy farms located in 3 different counties within the Finger Lakes region of Upstate New York. All the samples were microscopically positive for Cryptosporidium spp. A total of 400 Cryptosporidium oocysts (10 single oocysts from each calf sample) were individually isolated and analyzed using a nested PCR targeting the SSU rRNA gene. The SSU rRNA gene was amplified in 324 (81%) individual oocysts. All SSU rRNA amplified individual oocysts DNA was genotyped using PCR-RFLP. C. parvum was the only identified species; 107 single oocysts generated PCR products from the A gene, 18 generated PCR products from the B gene and 199 generated PCR products from both. Sequence analysis of the gp60 gene in 99 individual oocysts revealed the presence of only subtype IIaA15G2R1 with 99.4-100% and 99.1-100% identity of nucleotides and amino acids, respectively. These sequences were identical (100%) in oocysts from 35 calves and exhibited mutations in the non-repeat region of the gp60 gene in those of 5 other calves. The examination of DNA from individual oocysts with genotyping and subtyping tools provides methodology to more clearly define the genetic characteristics of Cryptosporidium spp. on farms and within individual animals.
Assuntos
Cryptosporidium/classificação , Cryptosporidium/genética , Oocistos/classificação , Oocistos/genética , Animais , Bovinos , Cryptosporidium/isolamento & purificação , Oocistos/isolamento & purificação , Zoonoses/parasitologiaRESUMO
Schistosomiasis is one of the major communicable diseases of public health and socioeconomic importance in the developing world. It is a waterborne disease in which Biomphalaria alexandrina snails are known to be the intermediate molluscan host for Schistosoma mansoni: the causative agent of human intestinal schistosomiasis. Therefore, snail control is one of the cornerstones of schistosomiasis control programs. Several methods have been used to eliminate snail hosts. One of these methods is chemical molluscicides, which have undesirable effect to nontarget organisms. Consequently, the search for biologically derived molluscicides to complement the use of synthetic molluscicides is a top priority. In this concern, this study is the first to evaluate the molluscicidal potency of Cyanobacterial Phycocyanin (C-PC) as a virtually untapped source. Laboratory assessment of three freshwater Cyanobacterial strains: Anabaena oryzae SOS13, Nostoc muscorum SOS14, and Spirulina platensis SOS13-derived C-Phycocyanin as a biocontrol agent against freshwater mollusks; B. alexandrina snails were performed. Also, the safety of tested C-PC on nontarget organisms (Tilapia fish) was assessed. Results reveal that C-PC extracted from all tested Cyanobacteria strains showed a promising molluscicidal activity (the mortality rate was 100% at 100 µg/mL concentration). Out of the examined strains, A. oryzae SOS13 phycocyanin was found to be the most potent strain (LC50 and LC90 were 38.492 and 49.976 µg/mL, respectively). Moreover, C-PC extracts from all tested strains have been found to be safe to Tilapia fish as the survival rate was 100% at the effective molluscicidal concentrations. We can conclude that C-PC extracts are the first promising microbial biopesticides for the control of freshwater B. alexandrina snails.
Assuntos
Biomphalaria/efeitos dos fármacos , Cianobactérias/química , Moluscocidas/farmacologia , Ficocianina/farmacologia , Schistosoma mansoni/fisiologia , Animais , Interações Hospedeiro-Parasita , Ficocianina/químicaRESUMO
Cryptosporidiosis is a parasitic zoonosis implicated in severe diarrhoea in pets and humans. This study aimed to determine the prevalence and genotypes of Cryptosporidium spp. in household dogs and in-contact children, and the risk factors associated with infection in children in Sharkia Province, Egypt. Fecal samples of 100 children (2-12 years old) and 50 dogs (3 months-1 year old) were randomly collected from both rural (children: n = 85, dogs: n = 40) and urban (children: n = 15, dogs: n = 10) households. Initial parasite detection was done by light microscopy, while, genotyping was based on molecular diagnostic assays. The overall prevalence of Cryptosporidium spp. infection in children was 35% using microscopy and 14% using nested polymerase chain reaction (PCR). In dogs, it was 34% using microscopy and 24% using nested PCR. Cryptosporidium spp. from children were identified as distinct genotypes, with the predominance of human genotype I (Cryptosporidium hominis) over the zoonotic genotype II (Cryptosporidium parvum). Moreover, only zoonotic genotype II (C. parvum) was identified in dog samples. The significant risk factors associated with the prevalence of Cryptosporidium infection in children were the presence of diarrheal episodes during time of survey, improper disposal of garbage, and dog feces and contact with other livestock (p ≤ 0.05). This study concluded that the existence of C. parvum in children and dogs residing the same households confirm the zoonotic transmission and its public health significance. Also, the study recommended the necessity of hygienic disposal of dog feces and preventing direct contact of dogs with other livestock.
Assuntos
Criptosporidiose/parasitologia , Cryptosporidium/genética , Doenças do Cão/parasitologia , Genótipo , Zoonoses , Animais , Criança , Pré-Escolar , Criptosporidiose/epidemiologia , Cryptosporidium/classificação , Doenças do Cão/epidemiologia , Cães , Egito/epidemiologia , Feminino , Humanos , Masculino , Fatores de Risco , População Rural , População UrbanaRESUMO
BACKGROUND: The worldwide increase of food-borne infections with antibiotic resistant pathogens constitutes a major public health problem. Therefore, this study aimed to determine the prevalence, antibiogram, virulence genes profiles and integron characteristics of non-typhoidal Salmonella spp. isolated from poultry meat and diarrhoeic patients in Egypt. METHODS: A total of 150 samples comprising (100 poultry meat and 50 diarrhoeic patients' stool) were examined for the presence of Salmonella spp. using culture methods followed by biochemical and serological identification of the isolates. All Salmonella strains were tested for their susceptibility to the antibiotics using disk diffusion method and screened for the presence of virulence genes and class I integrons using PCR. RESULTS: The overall prevalence of Salmonella spp. in poultry meat samples was 10 % compared to 4 % in diarrhoeic patients. All the isolates were serologically identified into Salmonella Typhimurium (seven isolates), S. Derby, S. Kiel, S. Rubislaw (one isolate, each) and untypable strains (two isolates). Antibiotic susceptibility testing showed a higher resistance of the total isolates to erythromycin and tetracycline (100 %, each), followed by amoxicillin-clavulanic acid (91.7 %), trimethoprim-sulfamethoxazole (83.3 %), streptomycin, nalidixic acid, ampicillin-sulbactam (75 %, each), gentamycin, ampicillin (66.7 %, each), chloramphenicol (58.3 %), ciprofloxacin (25 %) and ceftriaxone (16.7 %). Virulence genes profiles revealed the presence of sopB gene in five Salmonella strains isolated from poultry meat (n = 3) and humans (n = 2). Moreover, pefA was only identified in three isolates from poultry meat. On the other hand, S. Kiel and S. Typhimurium (one isolate, each) were harboring hilA and stn genes, respectively. Class 1 integrons were detected in all Salmonella spp. with variable amplicon sizes ranged from 650-3000 bp. Sequencing of these amplicons revealed the presence of gene cassettes harboring aac(3)-Id, aadA2, aadA4, aadA7, sat, dfrA15, lnuF and estX resistance genes. Nucleotide sequence analysis showed point mutations in the aac(3)-Id of S. Derby, aadA2, estX-sat genes of S. Typhimurium. Meanwhile, frame shift mutation was observed in aadA7 genes of S. Typhimurium. CONCLUSIONS: Increasing rate of antimicrobial resistance and class 1 integrons among multidrug resistant Salmonella spp. has prompted calls for the reduction of antimicrobial use in livestock to prevent future emergence of resistance.