Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Cell ; 187(18): 4926-4945.e22, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38986619

RESUMO

Posterior fossa group A (PFA) ependymoma is a lethal brain cancer diagnosed in infants and young children. The lack of driver events in the PFA linear genome led us to search its 3D genome for characteristic features. Here, we reconstructed 3D genomes from diverse childhood tumor types and uncovered a global topology in PFA that is highly reminiscent of stem and progenitor cells in a variety of human tissues. A remarkable feature exclusively present in PFA are type B ultra long-range interactions in PFAs (TULIPs), regions separated by great distances along the linear genome that interact with each other in the 3D nuclear space with surprising strength. TULIPs occur in all PFA samples and recur at predictable genomic coordinates, and their formation is induced by expression of EZHIP. The universality of TULIPs across PFA samples suggests a conservation of molecular principles that could be exploited therapeutically.


Assuntos
Ependimoma , Ependimoma/genética , Humanos , Neoplasias Infratentoriais/genética , Neoplasias Infratentoriais/patologia , Genoma Humano , Lactente , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Masculino , Feminino
2.
EMBO J ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232130

RESUMO

Conserved signaling cascades monitor protein-folding homeostasis to ensure proper cellular function. One of the evolutionary conserved key players is IRE1, which maintains endoplasmic reticulum (ER) homeostasis through the unfolded protein response (UPR). Upon accumulation of misfolded proteins in the ER, IRE1 forms clusters on the ER membrane to initiate UPR signaling. What regulates IRE1 cluster formation is not fully understood. Here, we show that the ER lumenal domain (LD) of human IRE1α forms biomolecular condensates in vitro. IRE1α LD condensates were stabilized both by binding to unfolded polypeptides as well as by tethering to model membranes, suggesting their role in assembling IRE1α into signaling-competent stable clusters. Molecular dynamics simulations indicated that weak multivalent interactions drive IRE1α LD clustering. Mutagenesis experiments identified disordered regions in IRE1α LD to control its clustering in vitro and in cells. Importantly, dysregulated clustering of IRE1α mutants led to defects in IRE1α signaling. Our results revealed that disordered regions in IRE1α LD control its clustering and suggest their role as a common strategy in regulating protein assembly on membranes.

3.
Nature ; 609(7927): 575-581, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071161

RESUMO

The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1-3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinases , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Corrente Citoplasmática , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/metabolismo , Mutação , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , ATPases Translocadoras de Prótons/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(4): e2209964120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669111

RESUMO

Sonic hedgehog signaling regulates processes of embryonic development across multiple tissues, yet factors regulating context-specific Shh signaling remain poorly understood. Exome sequencing of families with polymicrogyria (disordered cortical folding) revealed multiple individuals with biallelic deleterious variants in TMEM161B, which encodes a multi-pass transmembrane protein of unknown function. Tmem161b null mice demonstrated holoprosencephaly, craniofacial midline defects, eye defects, and spinal cord patterning changes consistent with impaired Shh signaling, but were without limb defects, suggesting a CNS-specific role of Tmem161b. Tmem161b depletion impaired the response to Smoothened activation in vitro and disrupted cortical histogenesis in vivo in both mouse and ferret models, including leading to abnormal gyration in the ferret model. Tmem161b localizes non-exclusively to the primary cilium, and scanning electron microscopy revealed shortened, dysmorphic, and ballooned ventricular zone cilia in the Tmem161b null mouse, suggesting that the Shh-related phenotypes may reflect ciliary dysfunction. Our data identify TMEM161B as a regulator of cerebral cortical gyration, as involved in primary ciliary structure, as a regulator of Shh signaling, and further implicate Shh signaling in human gyral development.


Assuntos
Furões , Proteínas Hedgehog , Animais , Feminino , Humanos , Camundongos , Gravidez , Sistema Nervoso Central/metabolismo , Cílios/genética , Cílios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos Knockout , Transdução de Sinais
5.
Nature ; 574(7780): 707-711, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31664194

RESUMO

In cancer, recurrent somatic single-nucleotide variants-which are rare in most paediatric cancers-are confined largely to protein-coding genes1-3. Here we report highly recurrent hotspot mutations (r.3A>G) of U1 spliceosomal small nuclear RNAs (snRNAs) in about 50% of Sonic hedgehog (SHH) medulloblastomas. These mutations were not present across other subgroups of medulloblastoma, and we identified these hotspot mutations in U1 snRNA in only <0.1% of 2,442 cancers, across 36 other tumour types. The mutations occur in 97% of adults (subtype SHHδ) and 25% of adolescents (subtype SHHα) with SHH medulloblastoma, but are largely absent from SHH medulloblastoma in infants. The U1 snRNA mutations occur in the 5' splice-site binding region, and snRNA-mutant tumours have significantly disrupted RNA splicing and an excess of 5' cryptic splicing events. Alternative splicing mediated by mutant U1 snRNA inactivates tumour-suppressor genes (PTCH1) and activates oncogenes (GLI2 and CCND2), and represents a target for therapy. These U1 snRNA mutations provide an example of highly recurrent and tissue-specific mutations of a non-protein-coding gene in cancer.


Assuntos
Neoplasias Cerebelares/genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , RNA Nuclear Pequeno/genética , Adolescente , Adulto , Processamento Alternativo , Proteínas Hedgehog/metabolismo , Humanos , Mutação , Sítios de Splice de RNA , Splicing de RNA
6.
Proc Natl Acad Sci U S A ; 119(11): e2118220119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254915

RESUMO

SignificanceChemical genetics, which investigates biological processes using small molecules, is gaining interest in plant research. However, a major challenge is to uncover the mode of action of the small molecules. Here, we applied the cellular thermal shift assay coupled with mass spectrometry (CETSA MS) to intact Arabidopsis cells and showed that bikinin, the plant-specific glycogen synthase kinase 3 (GSK3) inhibitor, changed the thermal stability of some of its direct targets and putative GSK3-interacting proteins. In combination with phosphoproteomics, we also revealed that GSK3s phosphorylated the auxin carrier PIN-FORMED1 and regulated its polarity that is required for the vascular patterning in the leaf.


Assuntos
Brassinosteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Proteoma , Transdução de Sinais , Aminopiridinas/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteômica/métodos , Succinatos/metabolismo
7.
Mod Pathol ; 37(2): 100387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007157

RESUMO

PATZ1-rearranged sarcomas are well-recognized tumors as part of the family of round cell sarcoma with EWSR1-non-ETS fusions. Whether PATZ1-rearranged central nervous system (CNS) tumors are a distinct tumor type is debatable. We thoroughly characterized a pediatric series of PATZ1-rearranged CNS tumors by chromosome microarray analysis (CMA), DNA methylation analysis, gene expression profiling and, when frozen tissue is available, optical genome mapping (OGM). The series consisted of 7 cases (M:F=1.3:1, 1-17 years, median 12). On MRI, the tumors were supratentorial in close relation to the lateral ventricles (intraventricular or iuxtaventricular), preferentially located in the occipital lobe. Two major histologic groups were identified: one (4 cases) with an overall glial appearance, indicated as "neuroepithelial" (NET) by analogy with the corresponding methylation class (MC); the other (3 cases) with a predominant spindle cell sarcoma morphology, indicated as "sarcomatous" (SM). A single distinct methylation cluster encompassing both groups was identified by multidimensional scaling analysis. Despite the epigenetic homogeneity, unsupervised clustering analysis of gene expression profiles revealed 2 distinct transcriptional subgroups correlating with the histologic phenotypes. Interestingly, genes implicated in epithelial-mesenchymal transition and extracellular matrix composition were enriched in the subgroup associated to the SM phenotype. The combined use of CMA and OGM enabled the identification of chromosome 22 chromothripsis in all cases suitable for the analyses, explaining the physical association of PATZ1 to EWSR1 or MN1. Six patients are currently disease-free (median follow-up 30 months, range 12-92). One patient of the SM group developed spinal metastases at 26 months from diagnosis and is currently receiving multimodal therapy (42 months). Our data suggest that PATZ1-CNS tumors are defined by chromosome 22 chromothripsis as causative of PATZ1 fusion, show peculiar MRI features (eg, relation to lateral ventricles, supratentorial frequently posterior site), and, although epigenetically homogenous, encompass 2 distinct histologic and transcriptional subgroups.


Assuntos
Cromotripsia , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Criança , Fatores de Transcrição/genética , Sarcoma/genética , Proteína EWS de Ligação a RNA/genética , Sistema Nervoso Central/patologia , Transcriptoma , Neoplasias de Tecidos Moles/genética , Proteínas Repressoras/genética , Fatores de Transcrição Kruppel-Like/genética
8.
Ann Neurol ; 93(1): 120-130, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36264136

RESUMO

OBJECTIVE: This study was undertaken to explore the gene expression profile of primary central nervous system vasculitis (PCNSV). METHODS: Brain specimens of 4 patients with granulomatous vasculitis (GV), 5 with lymphocytic vasculitis (LV), 4 with amyloid ß-related angiitis (ABRA), and 4 normal controls were studied. RNA-sequencing was performed using the Illumina Hiseq-4,000 platform and the Illumina TruSeq Total-RNA library. Student t test and false discovery rate tests were performed for each of the differentially expressed transcripts. Ingenuity Pathway Analysis was used for the pathway expression analysis. CIBERSORT was used to estimate the abundances of different immune cell subsets in the tissues based on gene expression data. RESULTS: Transcripts differentially expressed between PCNSV and normal brain indicated that endosomal, mitochondrial, and ribosome dysfunction, alterations in protein synthesis, and noncoding RNAs might be involved in PCNSV. Pathway analysis revealed the activation of dendritic cell maturation and antigen processing as well as neuroinflammation in PCNSV versus normal brain, whereas oxidative phosphorylation was inhibited. CIBERSORT estimation of immune cell subsets suggested that activated NK cells, M1 macrophages, memory B cells, and follicular helper T cells were likely to be more prevalent in PCNSV samples. Naïve CD4 T cells and monocytes were mainly estimated to be present in GV and ABRA. Plasma cell and γδ T-cell signatures were mainly found in LV and normal brain. GV showed higher levels of genes associated with macrophage activities and T cells. ABRA showed higher levels of long noncoding RNAs and miR-616. LV showed higher levels of genes encoding immunoglobulins. INTERPRETATION: RNA sequencing confirmed PCNSV heterogeneity. ANN NEUROL 2023;93:120-130.


Assuntos
MicroRNAs , Vasculite do Sistema Nervoso Central , Humanos , Peptídeos beta-Amiloides/metabolismo , Transcriptoma , Imageamento por Ressonância Magnética , Vasculite do Sistema Nervoso Central/genética , RNA
9.
Radiology ; 307(5): e221885, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37191486

RESUMO

The fifth edition of the World Health Organization classification of tumors of the central nervous system (CNS), published in 2021, introduces major shifts in the classification of brain and spine tumors. These changes were necessitated by rapidly increasing knowledge of CNS tumor biology and therapies, much of which is based on molecular methods in tumor diagnosis. The growing complexity of CNS tumor genetics has required reorganization of tumor groups and acknowledgment of new tumor entities. For radiologists interpreting neuroimaging studies, proficiency with these updates is critical in providing excellent patient care. This review will focus on new or revised CNS tumor types and subtypes, beyond infiltrating glioma (described in part 1 of this series), with an emphasis on imaging features.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Humanos , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Glioma/diagnóstico por imagem , Encéfalo/patologia , Organização Mundial da Saúde , Radiologistas
10.
Mod Pathol ; 36(12): 100323, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678673

RESUMO

Primary diffuse large B-cell lymphoma of the primary central nervous system (CNS-DLBCL) is an aggressive disease, with dismal prognosis despite the use of high-dose methotrexate-based polychemotherapy. Our study aimed to expand the biologic profiles of CNS-DLBCL and to correlate them with clinical/imaging findings to gain diagnostic insight and possibly identify new therapeutic targets. We selected 61 CNS-DLBCL whose formalin-fixed paraffin-embedded samples were available at first diagnosis. These were investigated by immunohistochemistry, cMYC rearrangements were explored by fluorescence in situ hybridization, and CNS-DLBCL mutated genes were evaluated by next-generation sequencing. CD10, BCL6, and IRF4 were observed in 16%, 83.6%, and 93% of cases, respectively. As typical of CNS lymphoma, 10 (16.4%) of 61 cases were classified as germinal center (GCB) type and 51 (83.6%) of 61 as non-germinal center (non-GCB) type according to the Hans algorithm. Double-expression status for BCL2 and cMYC was detected in 36 (59%) of 61 cases whereas 25 (41%) of 61 were non-DE. Rearrangement of the cMYC gene was detected in 2 cases, associated with BCL6 translocation only in 1 case MYD88, PIM1, CD79B, and TP53 were mutated in 54.5%, 53.5%, 30.2%, and 18.4% cases, respectively. Novel mutations not previously reported in CNS-DLBCL were found: AIP in 23.1%, PI3KCA in 15%, NOTCH1 in 11.4%, GNAS in 8.1%, CASP8 in 7.9%, EGFR in 6.4%, PTEN in 5.1, and KRAS in 2.6% of cases. Survival was significantly longer for patients with mutated MYD88 (8.7 months vs 1.7 months; log-rank test = 5.43; P = .020) and for patients with mutated CD79B (10.8 months vs 2.5 months; log-rank test = 4.64; P = .031). MYD88 and CD79B predicted a longer survival in patients affected by CNS-DLBCL. Notably, we identified novel mutations that enrich the mutational landscape of CNS-DLBCL, suggest a role of PTEN-PI3K-AKT and receptor tyrosine kinase-RAS-mitogen-activated protein kinase signaling in a subset of CNS-DLBCL, and provide new potential therapeutic targets.


Assuntos
Linfoma Difuso de Grandes Células B , Fator 88 de Diferenciação Mieloide , Humanos , Hibridização in Situ Fluorescente , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosfatidilinositol 3-Quinases/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Prognóstico , Genômica
11.
Acta Neuropathol ; 145(1): 71-82, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271929

RESUMO

High-grade astrocytoma with piloid features (HGAP) is a recently recognized glioma type whose classification is dependent on its global epigenetic signature. HGAP is characterized by alterations in the mitogen-activated protein kinase (MAPK) pathway, often co-occurring with CDKN2A/B homozygous deletion and/or ATRX mutation. Experience with HGAP is limited and to better understand this tumor type, we evaluated an expanded cohort of patients (n = 144) with these tumors, as defined by DNA methylation array testing, with a subset additionally evaluated by next-generation sequencing (NGS). Among evaluable cases, we confirmed the high prevalence CDKN2A/B homozygous deletion, and/or ATRX mutations/loss in this tumor type, along with a subset showing NF1 alterations. Five of 93 (5.4%) cases sequenced harbored TP53 mutations and RNA fusion analysis identified a single tumor containing an NTRK2 gene fusion, neither of which have been previously reported in HGAP. Clustering analysis revealed the presence of three distinct HGAP subtypes (or groups = g) based on whole-genome DNA methylation patterns, which we provisionally designated as gNF1 (n = 18), g1 (n = 72), and g2 (n = 54) (median ages 43.5 years, 47 years, and 32 years, respectively). Subtype gNF1 is notable for enrichment with patients with Neurofibromatosis Type 1 (33.3%, p = 0.0008), confinement to the posterior fossa, hypermethylation in the NF1 enhancer region, a trend towards decreased progression-free survival (p = 0.0579), RNA processing pathway dysregulation, and elevated non-neoplastic glia and neuron cell content (p < 0.0001 and p < 0.0001, respectively). Overall, our expanded cohort broadens the genetic, epigenetic, and clinical phenotype of HGAP and provides evidence for distinct epigenetic subtypes in this tumor type.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Homozigoto , Deleção de Sequência , Astrocitoma/genética , Astrocitoma/patologia , Mutação/genética , Metilação de DNA/genética
12.
Adv Exp Med Biol ; 1416: 35-45, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432618

RESUMO

Meningiomas are considered to arise from meningothelial cells, whose cytomorphology they recapitulate. In this chapter, we review the characteristic histological features of meningioma, including classic architectural and cytological features. There exists a broad spectrum of morphological variants of meningioma. The 2021 WHO Classification recognizes nine benign (grade 1), three intermediate-grade (grade 2), and three malignant (grade 3) variants. We review the characteristic histological features of these meningioma variants, describe immunohistochemical stains, which may assist with establishing a diagnosis, and discuss differential diagnostic considerations that may prove challenging for a diagnosis of meningioma.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Células Epiteliais
13.
Adv Exp Med Biol ; 1405: 253-280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37452941

RESUMO

Glioneuronal and neuronal tumors (GNTs) are rare neoplasms composed of neural and glial elements frequently located in the temporal lobe. Epilepsy is the main symptom and diagnosis mostly occurs before adulthood. The great majority of GNTs are WHO grade I tumors, but anaplastic transformations and forms exist. Their common association with focal cortical dysplasia is well recognized and should be taken into consideration during neurophysiological presurgical and surgical planning since the aim of surgery should be the removal of the tumor and of the entire epileptogenic zone according to anatomo-electrophysiological findings. Surgery still remains the cornerstone of symptomatic GNT, while radiotherapy, chemotherapy, and new target therapies are generally reserved for anaplastic, unresectable, or evolving tumors. Furthermore, since many GNTs show overlapping clinical and neuroradiological features, the definition of specific histopathological, genetic, and molecular characteristics is crucial. Epileptological, oncological, neurosurgical, and pathological issues of these tumors make a multidisciplinary management mandatory.


Assuntos
Neoplasias Encefálicas , Epilepsia , Neoplasias Neuroepiteliomatosas , Humanos , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Epilepsia/diagnóstico , Epilepsia/etiologia , Epilepsia/terapia , Neoplasias Neuroepiteliomatosas/complicações , Neoplasias Neuroepiteliomatosas/patologia , Neoplasias Neuroepiteliomatosas/cirurgia , Neuroglia/patologia , Neurônios/patologia
14.
Acta Neurochir (Wien) ; 165(4): 935-945, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36396843

RESUMO

PURPOSE: Hybrid peripheral nerve sheath tumors (HPNST) are a newly recognized class of peripheral nerve sheath tumor, composed of at least two areas characteristic of perineurioma, schwannoma, or neurofibroma. The literature consists only of case reports and small series; therefore, we present an illustrative case and an analysis of all reported cases of HPNST with a perineurioma component in the literature. METHODS: A systematic search of the literature was performed to identify all reported cases of hybrid perineurioma-schwannoma or perineurioma-neurofibroma in the world's literature. Individual cases were analyzed for demographics, clinical features, imaging, and outcomes. RESULTS: A total of 159 cases were identified across 41 studies. Hybrid tumors tended to present in mid-adulthood (median 38.5 years), predominantly affected females (57%, 89/156), as a painless (63%, 63/100) mass, or swelling. Ten patients (10/74, 14%) had a history of neurofibromatosis 1, and 2 patients a history of neurofibromatosis 2 (2/74, 3%). The majority (78%, 122/157) of cases occurred superficially, most commonly in the lower extremity (25%, 39/157). Perineurioma-schwannoma was the most reported (86%, 137/159) pathologic diagnosis, with 3 cases presenting with malignant features. Two cases reocurred after resection. CONCLUSION: HPNST tend to occur in mid-adulthood and present as slowly progressive, painless, superficial masses, with a heterogeneous appearance on imaging. These entities pose a unique diagnostic challenge and likely remain under-recognized in the literature and current clinical practice. They pose low risk of recurrence or malignant transformation, and future work regarding the association with neurofibromatosis and genetic profiles is needed.


Assuntos
Neoplasias de Bainha Neural , Neurilemoma , Neurofibroma , Neurofibromatose 1 , Neurofibromatose 2 , Feminino , Humanos , Adulto , Neoplasias de Bainha Neural/diagnóstico por imagem , Neoplasias de Bainha Neural/cirurgia , Neurilemoma/diagnóstico por imagem , Neurilemoma/cirurgia , Neurofibroma/diagnóstico por imagem , Neurofibroma/cirurgia
15.
Radiology ; 304(3): 494-508, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35880978

RESUMO

The fifth edition of the World Health Organization (WHO) classification of tumors of the central nervous system, published in 2021, contains substantial updates in the classification of tumor types. Many of these changes are relevant to radiologists, including "big picture" changes to tumor diagnosis methods, nomenclature, and grading, which apply broadly to many or all central nervous system tumor types, as well as the addition, elimination, and renaming of multiple specific tumor types. Radiologists are integral in interpreting brain tumor imaging studies and have a considerable impact on patient care. Thus, radiologists must be aware of pertinent changes in the field. Staying updated with the most current guidelines allows radiologists to be informed and effective at multidisciplinary tumor boards and in interactions with colleagues in neuro-oncology, neurosurgery, radiation oncology, and neuropathology. This review represents the first of a two-installment review series on the most recent changes to the WHO brain tumor classification system. This first installment focuses on the changes to the classification of adult and pediatric gliomas of greatest relevance for radiologists.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Adulto , Neoplasias Encefálicas/patologia , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Criança , Glioma/diagnóstico por imagem , Glioma/patologia , Humanos , Radiologistas , Organização Mundial da Saúde
16.
Am J Pathol ; 191(4): 602-617, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497701

RESUMO

Solitary fibrous tumors (SFTs) harbor recurrent NAB2-STAT6 gene fusions, promoting constitutional up-regulation of oncogenic early growth response 1 (EGR1)-dependent gene expression. SFTs with the most common canonical NAB2 exon 4-STAT6 exon 2 fusion variant are often located in the thorax (pleuropulmonary) and are less cellular with abundant collagen. In contrast, SFTs with NAB2 exon 6-STAT6 exon 16/17 fusion variants typically display a cellular round to ovoid cell morphology and are often located in the deep soft tissue of the retroperitoneum and intra-abdominal pelvic region or in the meninges. Here, we employed next-generation sequencing-based gene expression profiling to identify significant differences in gene expression associated with anatomic localization and NAB2-STAT6 gene fusion variants. SFTs with the NAB2 exon 4-STAT6 exon 2 fusion variant showed a transcriptional signature enriched for genes involved in DNA binding, gene transcription, and nuclear localization, whereas SFTs with the NAB2 exon 6-STAT6 exon 16/17 fusion variants were enriched for genes involved in tyrosine kinase signaling, cell proliferation, and cytoplasmic localization. Specific transcription factor binding motifs were enriched among differentially expressed genes in SFTs with different fusion variants, implicating co-transcription factors in the modification of chimeric NGFI-A binding protein 2 (NAB2)-STAT6-dependent deregulation of EGR1-dependent gene expression. In summary, this study establishes a potential molecular biologic basis for clinicopathologic differences in SFTs with distinct NAB2-STAT6 gene fusion variants.


Assuntos
Biomarcadores Tumorais/genética , Proteínas Repressoras/genética , Fator de Transcrição STAT6/genética , Tumores Fibrosos Solitários/genética , Éxons/genética , Feminino , Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Proteínas de Fusão Oncogênica/genética , Proteínas Repressoras/metabolismo , Tumores Fibrosos Solitários/patologia
17.
Clin Endocrinol (Oxf) ; 97(6): 763-772, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36161330

RESUMO

OBJECTIVE: To profile clinically non-aggressive and aggressive pituitary adenomas (PAs)/pituitary neuroendocrine tumours (PitNETs) and pituitary carcinomas for somatic mutations and epigenetic alterations of genes involved in cell proliferation/differentiation, microRNAs (miRNA)/long noncoding RNA (LncRNA)-post-transcriptional regulators and therapy targets. DESIGN: Retrospective observational study. PATIENTS AND MEASUREMENTS: A total of 64 non-aggressive and 41 aggressive PAs/PitNETs and 6 pituitary carcinomas treated by endoscopic surgery with ≥1-year follow-up were included. Somatic mutations of 17 genes and DNA methylation of 22 genes were assessed. Ten normal pituitaries were used as control. RESULTS: We found at least one mutation in 17 tumours, including 6/64 non-aggressive, 10/41 aggressive PAs/PitNETs, and 1/6 pituitary carcinoma. AIP (N = 6) was the most frequently mutated gene, followed by NOTCH (4), and TP53 (3). Hypermethylation of PARP15, LINC00599, ZAP70 was more common in aggressive than non-aggressive PAs/PITNETs (p < .05). Lower levels of methylation of AIP, GNAS and PDCD1 were detected in aggressive PAs/PITNETs than non-aggressive ones (p < .05). For X-linked genes, males presented higher level of methylation of FLNA, UXT and MAGE family (MAGEA11, MAGEA1, MAGEC2) genes in aggressive vs. non-aggressive PAs/PITNETs (p < .05). In pituitary carcinomas, methylation of autosomal genes PARP15, LINC00599, MIR193 and ZAP70 was higher than in PAs/PITNETs, while X-linked genes methylation level was lower. CONCLUSIONS: Somatic mutations and methylation levels of genes involved in cell proliferation/differentiation, miRNA/LncRNA-post-transcriptional regulators and targets of antineoplastic therapies are different in non-aggressive and in aggressive PAs/PitNETs. Methylation profile also varies according to gender. Combined genetic-epigenetic analysis, in association with clinico-radiological-pathological data, may be of help in predicting PA/PitNET behaviour.


Assuntos
Adenoma , MicroRNAs , Tumores Neuroendócrinos , Neoplasias Hipofisárias , RNA Longo não Codificante , Masculino , Humanos , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Epigenômica , Adenoma/genética , Adenoma/patologia , Tumores Neuroendócrinos/patologia , Fatores de Transcrição/genética , Mutação/genética , MicroRNAs/genética , Proteínas de Ciclo Celular/genética , Chaperonas Moleculares/genética
18.
Acta Neuropathol ; 143(3): 403-414, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35103816

RESUMO

Tumors of the central nervous system (CNS) often display a wide morphologic spectrum that has, until recently, been the sole basis for tumor classification. The introduction of the integrated histomolecular diagnostic approach in CNS tumors has facilitated a classification system that is increasingly data-driven and with improved alignment to clinical outcome. Here, we report a previously uncharacterized glioma type (n = 31) using unsupervised clustering analysis of DNA methylation array data from approximately 14,000 CNS tumor samples. Histologic examination revealed circumscribed growth and morphologic similarities to pleomorphic xanthoastrocytoma (PXA), astroblastoma, ependymoma, polymorphous neuroepithelial tumor of the young (PLNTY), and IDH-wildtype glioblastoma (GBM). Median age (46.5 years) was significantly older than other circumscribed gliomas and younger than GBM. Dimensionality reduction with uniform manifold approximation and projection (UMAP) and hierarchical clustering confirmed a methylation signature distinct from known tumor types and methylation classes. DNA sequencing revealed recurrent mutations in TP53 (57%), RB1 (26%), NF1 (26%), and NF2 (14%). BRAF V600E mutations were detected in 3/27 sequenced cases (12%). Copy number analysis showed increased whole chromosome aneuploidy with recurrent loss of chromosome 13 (28/31 cases, 90%). CDKN2A/B deletion (2/31, 6%) and MGMT promoter methylation (1/31, 3%) were notably rare events. Most tumors showed features of a high-grade glioma, yet survival data showed significantly better overall survival compared to GBM (p < 0.0001). In summary, we describe a previously uncharacterized glioma of adults identified by a distinct DNA methylation signature and recurrent loss of chromosome 13.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Monossomia , Mutação , Proteína Supressora de Tumor p53 , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Cromossomos Humanos Par 13 , Humanos , Pessoa de Meia-Idade , Mutação/genética , Proteína Supressora de Tumor p53/genética
19.
Ann Diagn Pathol ; 59: 151967, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35567887

RESUMO

INTRODUCTION: Loss-of-function mutations in EED and SUZ12, core components of the polycomb repressive complex 2 (PRC2), occur in >90% of sporadic and radiation-associated malignant peripheral nerve sheath tumors (MPNST) and in roughly 70% of NF1-related tumors. PRC2 inactivation results in loss of H3K27me3 expression and aberrant downstream transcription. H3K27me3 expression is lost in 40-90% of spindle cell MPNST but is not specific. A single study has suggested that dimethylated H3K27 (H3K27me2) is a more specific marker of MPNST. METHODS: We compared the expression of H3K27me3 and H3K27me2 by immunohistochemistry in a series of MPNST (n = 26), neurofibroma (n = 11), conventional dermatofibrosarcoma protuberans (n = 8), fibrosarcomatous dermatofibrosarcoma protuberans (n = 7), spindle cell rhabdomyosarcoma (n = 6), high-risk solitary fibrous tumor (n = 9), dedifferentiated chondrosarcoma (n = 7), synovial sarcoma (n = 9), diffuse midline glioma, H3K27-altered (n = 13), conventional diffuse astrocytoma (n = 2), conventional cutaneous melanoma (n = 8), uveal melanoma (n = 8), cellular blue nevus (n = 17) and melanoma arising in blue nevus (n = 6). RESULTS: H3K27me3 and H3K27me2 expression patterns were concordant in 115/137 (84%) with 85 cases (62%) expressing both markers and 30 cases (22%) showing loss of both. Discordant results were seen in 22 cases (H3K27me3 loss with retained H3K27me2, 10 cases (7%); H3K27me3 expression with H3K27me2 loss, 12 cases (9%)). H3K27me2 loss was not specific for MPNST and was also seen in certain other tumors, in particular those in the "blue nevus family". CONCLUSION: We conclude that H3K27me2 loss is not specific for MPNST, and like H3K27me3, should be used in the appropriate clinicopathologic, immunohistochemical and molecular genetic context. Loss of H3K27me2 with retained H3K27me3 is a common feature of "blue nevus family" melanocytic tumors known to harbor GNAQ/GNA11 mutations.


Assuntos
Melanoma , Neoplasias de Bainha Neural , Neurilemoma , Neurofibrossarcoma , Nevo Azul , Neoplasias Cutâneas , Biomarcadores Tumorais/metabolismo , Metilação de DNA , Histonas/metabolismo , Humanos , Melanoma/diagnóstico , Melanoma/genética , Neoplasias de Bainha Neural/metabolismo , Neurilemoma/diagnóstico , Neurofibrossarcoma/genética , Nevo Azul/genética , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética
20.
Acta Neuropathol ; 142(6): 1025-1043, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34661724

RESUMO

Pituicytoma (PITUI), granular cell tumor (GCT), and spindle cell oncocytoma (SCO) are rare tumors of the posterior pituitary. Histologically, they may be challenging to distinguish and have been proposed to represent a histological spectrum of a single entity. We performed targeted next-generation sequencing, DNA methylation profiling, and copy number analysis on 47 tumors (14 PITUI; 12 GCT; 21 SCO) to investigate molecular features and explore possibilities of clinically meaningful tumor subclassification. We detected two main epigenomic subgroups by unsupervised clustering of DNA methylation data, though the overall methylation differences were subtle. The largest group (n = 23) contained most PITUIs and a subset of SCOs and was enriched for pathogenic mutations within genes in the MAPK/PI3K pathways (12/17 [71%] of sequenced tumors: FGFR1 (3), HRAS (3), BRAF (2), NF1 (2), CBL (1), MAP2K2 (1), PTEN (1)) and two with accompanying TERT promoter mutation. The second group (n = 16) contained most GCTs and a subset of SCOs, all of which mostly lacked identifiable genetic drivers. Outcome analysis demonstrated that the presence of chromosomal imbalances was significantly associated with reduced progression-free survival especially within the combined PITUI and SCO group (p = 0.031). In summary, we observed only subtle DNA methylation differences between posterior pituitary tumors, indicating that these tumors may be best classified as subtypes of a single entity. Nevertheless, our data indicate differences in mutation patterns and clinical outcome. For a clinically meaningful subclassification, we propose a combined histo-molecular approach into three subtypes: one subtype is defined by granular cell histology, scarcity of identifiable oncogenic mutations, and favorable outcome. The other two subtypes have either SCO or PITUI histology but are segregated by chromosomal copy number profile into a favorable group (no copy number changes) and a less favorable group (copy number imbalances present). Both of the latter groups have recurrent MAPK/PI3K genetic alterations that represent potential therapeutic targets.


Assuntos
Adenoma Oxífilo/genética , Tumor de Células Granulares/genética , Neoplasias Hipofisárias/genética , Epigênese Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA