Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
EMBO Rep ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907027

RESUMO

Extracellular matrix (ECM) is a major component of the tumor environment, promoting the establishment of a pro-invasive behavior. Such environment is supported by both tumor- and stromal-derived metabolites, particularly lactate. In prostate cancer (PCa), cancer-associated fibroblasts (CAFs) are major contributors of secreted lactate, able to impact on metabolic and transcriptional regulation in cancer cells. Here, we describe a mechanism by which CAF-secreted lactate promotes in PCa cells the expression of genes coding for the collagen family. Lactate-exploiting PCa cells rely on increased α-ketoglutarate (α-KG) which activates the α-KG-dependent collagen prolyl-4-hydroxylase (P4HA1) to support collagen hydroxylation. De novo synthetized collagen plays a signaling role by activating discoidin domain receptor 1 (DDR1), supporting stem-like and invasive features of PCa cells. Inhibition of lactate-induced collagen hydroxylation and DDR1 activation reduces the metastatic colonization of PCa cells. Overall, these results provide a new understanding of the link between collagen remodeling/signaling and the nutrient environment exploited by PCa.

2.
Trends Biochem Sci ; 44(2): 153-166, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30473428

RESUMO

The presence of lactate in human tumours has been long neglected, confined to the role of a waste product derived from glycolysis and as a biomarker of malignancy. More recently, lactate has been rediscovered as signalling molecule that plays important roles in the regulation of the metabolic pathways, the immune response, and cell-to-cell communication within the tumour microenvironment. This review examines recent discoveries about the functional role of lactate in shaping the behaviour and the phenotype of tumour and tumour-associated cells, and describes potential clinical approaches to target lactate transport and metabolism in tumours.


Assuntos
Ácido Láctico/metabolismo , Neoplasias/metabolismo , Animais , Humanos
3.
Semin Cell Dev Biol ; 98: 71-79, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31108187

RESUMO

Metabolic reprogramming as well as the flexible utilisation of fuel sources by tumour cells has been considered not only intrinsic to malignant cells but also sustained by resident and/or recruited stromal cells. The complexity of tumour-stroma cross-talk is experienced by neoplastic cells through profound changes in the own metabolic machinery. In such context, mitochondria are dynamic organelles that receive, orchestrate and exchange a multiplicity of stromal cues within the tumour cells to finely regulate key metabolic and signalling pathways, allowing malignant cells to adapt and thrive in an ever-changing environment. In this review, we focus on how tumour mitochondria are coached by stromal metabolic supply and how this re-education sustains tumour malignant traits.


Assuntos
Transição Epitelial-Mesenquimal , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Células Estromais/metabolismo , Humanos , Neoplasias/patologia
4.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991773

RESUMO

Endo-, phyto- and synthetic cannabinoids have been proposed as promising anti-cancer agents able to impair cancer cells' behavior without affecting their non-transformed counterparts. However, cancer outcome depends not only on cancer cells' activity, but also on the stromal cells, which coevolve with cancer cells to sustain tumor progression. Here, we show for the first time that cannabinoid treatment impairs the activation and the reactivity of cancer-associated fibroblasts (CAFs), the most represented stromal component of prostate tumor microenvironment. Using prostate cancer-derived CAFs, we demonstrated that WIN 55-212.2 mesylate, a synthetic full agonist of cannabinoid receptors (CBs) 1 and 2, downregulates α-smooth muscle actin and matrix metalloprotease-2 expression, and it inhibits CAF migration, essential features to ensure the activated and reactive CAF phenotype. Furthermore, by impairing stromal reactivity, WIN 55-212.2 mesylate also negatively affects CAF-mediated cancer cells' invasiveness. Using selective antagonists of CBs, we proved that CAFs response to WIN 55-212.2 mesylate is mainly mediated by CB2. Finally, we suggest that endocannabinoids self-sustain both prostate tumor cells migration and CAFs phenotype by an autocrine loop. Overall, our data strongly support the use of cannabinoids as anti-tumor agents in prostate cancer, since they are able to simultaneously strike both cancer and stromal cells.


Assuntos
Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Canabinoides/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Androgênios/metabolismo , Benzoxazinas/farmacologia , Biomarcadores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Humanos , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Fenótipo , Receptor CB2 de Canabinoide/metabolismo , Microambiente Tumoral/efeitos dos fármacos
5.
J Cell Physiol ; 234(6): 8274-8285, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30378132

RESUMO

Cancer progression is strictly dependent on the relationship between tumor cells and the surrounding stroma, which supports cancer malignancy promoting several crucial steps of tumor progression, including the execution of the epithelial to mesenchymal transition (EMT) associated with enhancement in cell invasion, resistance to both anoikis and chemotherapeutic treatments. Recently it has been highlighted the central role of microRNAs (miRNAs) as regulators of tumor progression. Notably, in several tumors a strong deregulation of miRNAs is observed, supporting proliferation, invasion, and metabolic reprogramming of tumor cells. Here we demonstrated that cancer-associated fibroblasts induce a downregulation of miR-1247 in prostate cancer (PCa) cells. We proved that miR-1247 repression is functional for the achievement of EMT and increased cell invasion as well as stemness traits. These phenomena contribute to promote the metastatic potential of PCa cells as demonstrated by increased lung colonization in in vivo experiments. Moreover, as a consequence of miR-1247 downregulation, we observed a correlated increased expression level of neuropilin-1, a miR-1247 target involved as a coreceptor in the epidermal growth factor receptor signaling. Taken together, our data highlight miR-1247 as a potential target for molecular therapies aimed to block the progression and diffusion of PCa.


Assuntos
Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Neuropilina-1/genética , Neoplasias da Próstata/genética , Proliferação de Células/genética , Reprogramação Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Neoplasias da Próstata/patologia , Células Estromais/metabolismo , Células Estromais/patologia
6.
Biochim Biophys Acta ; 1833(12): 3481-3498, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23830918

RESUMO

Anoikis is a programmed cell death induced upon cell detachment from extracellular matrix, behaving as a critical mechanism in preventing adherent-independent cell growth and attachment to an inappropriate matrix, thus avoiding colonizing of distant organs. As anchorage-independent growth and epithelial-mesenchymal transition, two features associated with anoikis resistance, are vital steps during cancer progression and metastatic colonization, the ability of cancer cells to resist anoikis has now attracted main attention from the scientific community. Cancer cells develop anoikis resistance due to several mechanisms, including change in integrins' repertoire allowing them to grow in different niches, activation of a plethora of inside-out pro-survival signals as over-activation of receptors due to sustained autocrine loops, oncogene activation, growth factor receptor overexpression, or mutation/upregulation of key enzymes involved in integrin or growth factor receptor signaling. In addition, tumor microenvironment has also been acknowledged to contribute to anoikis resistance of bystander cancer cells, by modulating matrix stiffness, enhancing oxidative stress, producing pro-survival soluble factors, triggering epithelial-mesenchymal transition and self-renewal ability, as well as leading to metabolic deregulations of cancer cells. All these events help cancer cells to inhibit the apoptosis machinery and sustain pro-survival signals after detachment, counteracting anoikis and constituting promising targets for anti-metastatic pharmacological therapy. This article is part of a Special Section entitled: Cell Death Pathways.


Assuntos
Anoikis , Progressão da Doença , Neoplasias/patologia , Transdução de Sinais , Animais , Citoproteção , Humanos , Metástase Neoplásica
7.
Cell Commun Signal ; 12: 24, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24690323

RESUMO

BACKGROUND: Cellular plasticity confers cancer cells the ability to adapt to microenvironmental changes, a fundamental requirement for tumour progression and metastasis. The epithelial to mesenchymal transition (EMT) is a transcriptional programme associated with increased cell motility and stemness. Besides EMT, the mesenchymal to amoeboid transition (MAT) has been described during tumour progression but to date, little is known about its transcriptional control and involvement in stemness. The aim of this manuscript is to investigate (i) the transcriptional profile associated with the MAT programme and (ii) to study whether MAT acquisition in melanoma cancer cells correlates with clonogenic potential to promote tumour growth. RESULTS: By using a multidisciplinary approach, we identified four different treatments able to induce MAT in melanoma cells: EphA2 overexpression, Rac1 functional inhibition using its RacN17 dominant negative mutant, stimulation with Ilomastat or treatment with the RhoA activator Calpeptin. First, gene expression profiling identified the transcriptional pathways associated with MAT, independently of the stimulus that induces the MAT programme. Notably, gene sets associated with the repression of mesenchymal traits, decrease in the secretion of extracellular matrix components as well as increase of cellular stemness positively correlate with MAT. Second, the link between MAT and stemness has been investigated in vitro by analysing stemness markers and clonogenic potential of melanoma cells undergoing MAT. Finally, the link between MAT inducing treatments and tumour initiating capability has been validated in vivo. CONCLUSION: Taken together, our results demonstrate that MAT programme in melanoma is characterised by increased stemness and clonogenic features of cancer cells, thus sustaining tumour progression. Furthermore, these data suggest that stemness is not an exclusive feature of cells undergoing EMT, but more generally is associated with an increase in cellular plasticity of cancer cells.


Assuntos
Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Dipeptídeos/farmacologia , Humanos , Melanoma/patologia , Células-Tronco Neoplásicas/fisiologia , Receptor EphA2/genética , Receptor EphA2/metabolismo , Transcrição Gênica , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/agonistas , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Arthritis Rheum ; 65(1): 258-69, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22972461

RESUMO

OBJECTIVE: Clinical evidence suggests that the vascular abnormalities of systemic sclerosis (SSc) precede the onset of fibrosis, but molecular cues accounting for a possible vascular connection of SSc fibrosis have been elusive, although they have been searched for intensively. Since we had previously shown that connective tissue growth factor (CCN2), endowed with fibroblast-oriented activities, was overexpressed by endothelial cells (ECs) from SSc patients, we undertook this study to investigate its role and mechanisms in fibroblast activation. METHODS: Normal fibroblasts were challenged with conditioned medium of normal microvascular ECs (MVECs) and MVECs obtained from SSc patients with the diffuse form of the disease. Fibroblast invasion was studied using the Boyden chamber Matrigel assay. Fibroblast activation was evaluated by Western blotting and immunofluorescence of α-smooth muscle actin (α-SMA), vimentin, and type I collagen. Matrix metalloproteinase (MMP) production was evaluated by zymography and reverse transcription-polymerase chain reaction. Signal transduction and activation of the small GTPases RhoA and Rac1 were studied by Western blotting. Inhibition of SSc MVEC conditioned medium-dependent fibroblast activation was obtained by anti-CCN2 antibodies and the transforming growth factor ß (TGFß) antagonist peptide p17. RESULTS: SSc MVEC CCN2 stimulated fibroblast activation and invasion. Such activities depended on CCN2-induced overexpression of TGFß and its type I, II, and III receptors combined with overproduction of MMP-2 and MMP-9 gelatinases. All of these effects were reversed by the TGFß antagonist peptide p17. Motility increase required Rac1 activation and RhoA inhibition and was inhibited by an MMP inhibitor. These features connoted a mesenchymal style of cell invasion. Since fibroblast activation also fostered overexpression of α-SMA, vimentin, and type I collagen, the CCN2-dependent increase in fibroblast activities recapitulated the characteristics of a mesenchymal-to-mesenchymal transition. CONCLUSION: SSc MVECs recruit and activate dermal fibroblasts by induction of a CCN2/TGFß-dependent mesenchymal-to-mesenchymal transition.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Escleroderma Sistêmico/metabolismo , Pele/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Western Blotting , Colágeno , Combinação de Medicamentos , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Imunofluorescência , Humanos , Laminina , Masculino , Mesoderma/patologia , Proteoglicanas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Escleroderma Sistêmico/patologia , Transdução de Sinais , Pele/patologia , Fator de Crescimento Transformador beta/farmacologia
9.
EMBO Mol Med ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926633

RESUMO

Triple-negative breast cancer (TNBC) has limited therapeutic options, is highly metastatic and characterized by early recurrence. Lipid metabolism is generally deregulated in TNBC and might reveal vulnerabilities to be targeted or used as biomarkers with clinical value. Ferroptosis is a type of cell death caused by iron-dependent lipid peroxidation which is facilitated by the presence of polyunsaturated fatty acids (PUFA). Here we identify fatty acid desaturases 1 and 2 (FADS1/2), which are responsible for PUFA biosynthesis, to be highly expressed in a subset of TNBC with a poorer prognosis. Lipidomic analysis, coupled with functional metabolic assays, showed that FADS1/2 high-expressing TNBC are susceptible to ferroptosis-inducing agents and that targeting FADS1/2 by both genetic interference and pharmacological approach renders those tumors ferroptosis-resistant while unbalancing PUFA/MUFA ratio by the supplementation of exogenous PUFA sensitizes resistant tumors to ferroptosis induction. Last, inhibiting lipid droplet (LD) formation and turnover suppresses the buffering capacity of LD and potentiates iron-dependent cell death. These findings have been validated in vitro and in vivo in mouse- and human-derived clinically relevant models and in a retrospective cohort of TNBC patients.

10.
Sci Transl Med ; 16(736): eadf9874, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416843

RESUMO

Targeting aromatase deprives ER+ breast cancers of estrogens and is an effective therapeutic approach for these tumors. However, drug resistance is an unmet clinical need. Lipidomic analysis of long-term estrogen-deprived (LTED) ER+ breast cancer cells, a model of aromatase inhibitor resistance, revealed enhanced intracellular lipid storage. Functional metabolic analysis showed that lipid droplets together with peroxisomes, which we showed to be enriched and active in the LTED cells, controlled redox homeostasis and conferred metabolic adaptability to the resistant tumors. This reprogramming was controlled by acetyl-CoA-carboxylase-1 (ACC1), whose targeting selectively impaired LTED survival. However, the addition of branched- and very long-chain fatty acids reverted ACC1 inhibition, a process that was mediated by peroxisome function and redox homeostasis. The therapeutic relevance of these findings was validated in aromatase inhibitor-treated patient-derived samples. Last, targeting ACC1 reduced tumor growth of resistant patient-derived xenografts, thus identifying a targetable hub to combat the acquisition of estrogen independence in ER+ breast cancers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Peroxissomos/metabolismo , Peroxissomos/patologia , Acetil-CoA Carboxilase , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Linhagem Celular Tumoral , Estrogênios/metabolismo , Resistencia a Medicamentos Antineoplásicos
11.
Br J Nutr ; 108(12): 2129-37, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22390897

RESUMO

Prostate cancer is one of the most common malignancies in men. Epidemiological and experimental studies have revealed that stromal cells of the tumour microenvironment contribute to the development of prostate cancers, while long-chain n-3 PUFA-enriched diets reduce the risk of this tumour histotype. These findings prompted us to investigate whether DHA, an n-3 PUFA, may abrogate differentiation of prostate fibroblasts into myofibroblasts, the activated form of fibroblasts generally involved in prostate cancer progression. We used the human prostate carcinoma cell line (PC3) as a prostate adenocarcinoma model and found that DHA (1) inhibits α-smooth muscle actin (α-SMA) expression, a typical marker of myofibroblast differentiation, in prostate fibroblasts stimulated in vitro with transforming growth factor-ß (TGF-ß), (2) blocks the matrix metalloproteinase-2-dependent enhanced invasiveness of PC3 prostate adenocarcinoma cells migrated in a medium conditioned by TGF-ß-stimulated prostate fibroblasts, (3) prevents epithelial-mesenchymal transition (EMT) and invasiveness of PC3 cells promoted by a medium conditioned by TGF-ß-stimulated prostate fibroblasts, and (4) reduces the growth rate of tumours obtained in immunodeficient animals injected with PC3 cells plus TGF-ß-stimulated prostate fibroblasts. Moreover, DHA was found to revert α-SMA expression and the invasiveness-promoting activity exerted in PC3 cells by tumoral-activated fibroblasts. Thus, DHA represents a suitable agent to inhibit prostate myofibroblast differentiation, invasiveness and EMT, two most important tumour-promoting activities involved in the progression of prostate cancer cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Fibroblastos/patologia , Miofibroblastos/patologia , Neoplasias da Próstata/patologia , Actinas/antagonistas & inibidores , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Humanos , Masculino , Camundongos , Camundongos SCID , Próstata/patologia , Fator de Crescimento Transformador beta/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
FEBS Lett ; 596(18): 2364-2381, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35776088

RESUMO

Deregulated metabolism is a well-known feature of several challenging diseases, including diabetes, obesity and cancer. Besides their important role as intracellular bioenergetic molecules, dietary nutrients and metabolic intermediates are released in the extracellular environment. As such, they may achieve unconventional roles as hormone-like molecules by activating cell surface G-protein-coupled receptors (GPCRs) that regulate several pathophysiological processes. In this review, we provide an insight into the role of lactate, succinate, fatty acids, amino acids as well as ketogenesis-derived and ß-oxidation-derived intermediates as extracellular signalling molecules. Moreover, the mechanisms by which their cognate metabolite-sensing GPCRs integrate nutritional and metabolic signals with specific intracellular pathways will be described. A better comprehension of these aspects is of fundamental importance to identify GPCRs as novel druggable targets.


Assuntos
Aminoácidos , Receptores Acoplados a Proteínas G , Aminoácidos/metabolismo , Hormônios , Lactatos , Receptores Acoplados a Proteínas G/metabolismo , Succinatos
13.
Cancer Res ; 82(7): 1267-1282, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35135811

RESUMO

Lactate is an abundant oncometabolite in the tumor environment. In prostate cancer, cancer-associated fibroblasts (CAF) are major contributors of secreted lactate, which can be taken up by cancer cells to sustain mitochondrial metabolism. However, how lactate impacts transcriptional regulation in tumors has yet to be fully elucidated. Here, we describe a mechanism by which CAF-secreted lactate is able to increase the expression of genes involved in lipid metabolism in prostate cancer cells. This regulation enhanced intracellular lipid accumulation in lipid droplets (LD) and provided acetyl moieties for histone acetylation, establishing a regulatory loop between metabolites and epigenetic modification. Inhibition of this loop by targeting the bromodomain and extraterminal protein family of histone acetylation readers suppressed the expression of perilipin 2 (PLIN2), a crucial component of LDs, disrupting lactate-dependent lipid metabolic rewiring. Inhibition of this CAF-induced metabolic-epigenetic regulatory loop in vivo reduced growth and metastasis of prostate cancer cells, demonstrating its translational relevance as a therapeutic target in prostate cancer. Clinically, PLIN2 expression was elevated in tumors with a higher Gleason grade and in castration-resistant prostate cancer compared with primary prostate cancer. Overall, these findings show that lactate has both a metabolic and an epigenetic role in promoting prostate cancer progression. SIGNIFICANCE: This work shows that stromal-derived lactate induces accumulation of lipid droplets, stimulates epigenetic rewiring, and fosters metastatic potential in prostate cancer.


Assuntos
Metabolismo dos Lipídeos , Neoplasias da Próstata , Epigênese Genética , Humanos , Ácido Láctico/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Próstata/patologia , Neoplasias da Próstata/patologia
14.
Cells ; 10(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943903

RESUMO

The tumour microenvironment (TME) is now recognised as a hallmark of cancer, since tumour:stroma crosstalk supports the key steps of tumour growth and progression. The dynamic co-evolution of the tumour and stromal compartments may alter the surrounding microenvironment, including the composition in metabolites and signalling mediators. A growing number of evidence reports the involvement of the endocannabinoid system (ECS) in cancer. ECS is composed by a complex network of ligands, receptors, and enzymes, which act in synergy and contribute to several physiological but also pathological processes. Several in vitro and in vivo evidence show that ECS deregulation in cancer cells affects proliferation, migration, invasion, apoptosis, and metastatic potential. Although it is still an evolving research, recent experimental evidence also suggests that ECS can modulate the functional behaviour of several components of the TME, above all the immune cells, endothelial cells and stromal components. However, the role of ECS in the tumour:stroma interplay remains unclear and research in this area is particularly intriguing. This review aims to shed light on the latest relevant findings of the tumour response to ECS modulation, encouraging a more in-depth analysis in this field. Novel discoveries could be promising for novel anti-tumour approaches, targeting the microenvironmental components and the supportive tumour:stroma crosstalk, thereby hindering tumour development.


Assuntos
Endocanabinoides/genética , Neoplasias/genética , Microambiente Tumoral/genética , Apoptose/genética , Movimento Celular/genética , Proliferação de Células/genética , Endocanabinoides/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/genética
15.
Am J Pathol ; 174(4): 1492-503, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19264906

RESUMO

Ligand-activated Eph tyrosine kinases regulate cellular repulsion, morphology, adhesion, and motility. EphA2 kinase is frequently up-regulated in several different types of cancers, including prostate, breast, colon, and lung carcinomas, as well as in melanoma. The existing data do not clarify whether EphA2 receptor phosphorylation or its simple overexpression, which likely leads to Eph kinase-independent responses, plays a role in the progression of malignant prostate cancer. In this study, we address the role of EphA2 tyrosine phosphorylation in prostate carcinoma cell adhesion, motility, invasion, and formation of metastases. Tumor cells expressing kinase-deficient EphA2 mutants, as well as an EphA2 variant lacking the cytoplasmic domain, are defective in ephrinA1-mediated cell rounding, retraction fiber formation, de-adhesion from the extracellular matrix, RhoA and Rac1 GTPase regulation, three-dimensional matrix invasion, and in vivo metastasis, suggesting a key role for EphA2 kinase activity. Nevertheless, EphA2 regulation of cell motility and invasion, as well as the formation of bone and visceral tumor colonies, reveals a component of both EphA2 kinase-dependent and -independent features. These results uncover a differential requirement for EphA2 kinase activity in the regulation of prostate carcinoma metastasis outcome, suggesting that although the kinase activity of EphA2 is required for the regulation of cell adhesion and cytoskeletal rearrangement, some distinct kinase-dependent and -independent pathways likely cooperate to drive cancer cell migration, invasion, and metastasis outcome.


Assuntos
Invasividade Neoplásica/fisiopatologia , Metástase Neoplásica/fisiopatologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptor EphA2/metabolismo , Animais , Western Blotting , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Efrina-A1/metabolismo , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Fosforilação , Reação em Cadeia da Polimerase
16.
Front Oncol ; 10: 256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32185131

RESUMO

Mitochondria play multifaceted roles in malignant tumor progression. Beyond their bioenergetic role, mitochondria are essential for providing malignant cells a higher plasticity to face the harsh environmental conditions. Cell-autonomous metabolic deregulation of cancer cells, or metabolic adaptation to microenvironmental cues (lack of nutrients, stromal supply, hypoxia, etc.), represent the triggering event of mitochondria overexploitation to orchestrate nutrient sensing and upload, signaling, and redox circuits. As readout of their higher function, mitochondria produce high amounts of reactive oxygen species (ROS) that are functional for multiple signaling networks underlying tumor proliferation, survival, and metastatic process. To compensate for the higher rate of mitochondrial ROS production, cancer cells have evolved adaptive mechanisms to increase their antioxidant systems and to address ROS activating pathways useful for the tumor cell adaptation to environmental changes. As these properties are critical for cancer progression, mitochondrial ROS have recently become an attractive target for anti-cancer therapies. We discuss how understanding of mitochondrial function in the tumor-specific generation of ROS will impact on the development of novel redox-based targeted therapeutic strategies.

17.
Cells ; 9(3)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164162

RESUMO

The majority of breast cancers express the estrogen receptor (ER) and are dependent on estrogen for their growth and survival. Endocrine therapy (ET) is the standard of care for these tumors. However, a superior outcome is achieved in a subset of ER positive (ER+)/human epidermal growth factor receptor 2 negative (HER2-) metastatic breast cancer patients when ET is administrated in combination with a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor, such as palbociclib. Moreover, CDK4/6 inhibitors are currently being tested in ER+/HER2+ breast cancer and reported encouraging results. Despite the clinical advances of a combinatorial therapy using ET plus CDK4/6 inhibitors, potential limitations (i.e., resistance) could emerge and the metabolic adaptations underlying such resistance warrant further elucidation. Here we investigate the glucose-dependent catabolism in a series of isogenic ER+ breast cancer cell lines sensitive to palbociclib and in their derivatives with acquired resistance to the drug. Importantly, ER+/HER2- and ER+/HER2+ cell lines show a different degree of glucose dependency. While ER+/HER2- breast cancer cells are characterized by enhanced aerobic glycolysis at the time of palbociclib sensitivity, ER+/HER2+ cells enhance their glycolytic catabolism at resistance. This metabolic phenotype was shown to have prognostic value and was targeted with multiple approaches offering a series of potential scenarios that could be of clinical relevance.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Glucose/metabolismo , Piperazinas/uso terapêutico , Piridinas/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Piperazinas/farmacologia , Piridinas/farmacologia , Transfecção
18.
J Cell Biol ; 161(5): 933-44, 2003 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-12796479

RESUMO

Signal transduction by reactive oxygen species (ROS; "redox signaling") has recently come into focus in cellular biology studies. The signaling properties of ROS are largely due to the reversible oxidation of redox-sensitive target proteins, and especially of protein tyrosine phosphatases, whose activity is dependent on the redox state of a low pKa active site cysteine. A variety of mitogenic signals, including those released by receptor tyrosine kinase (RTKs) ligands and oncogenic H-Ras, involve as a critical downstream event the intracellular generation of ROS. Signaling by integrins is also essential for the growth of most cell types and is constantly integrated with growth factor signaling. We provide here evidence that intracellular ROS are generated after integrin engagement and that these oxidant intermediates are necessary for integrin signaling during fibroblast adhesion and spreading. Moreover, we propose a synergistic action of integrins and RTKs for redox signaling. Integrin-induced ROS are required to oxidize/inhibit the low molecular weight phosphotyrosine phosphatase, thereby preventing the enzyme from dephosphorylating and inactivating FAK. Accordingly, FAK phosphorylation and other downstream events, including MAPK phosphorylation, Src phosphorylation, focal adhesion formation, and cell spreading, are all significantly attenuated by inhibition of redox signaling. Hence, we have outlined a redox circuitry whereby, upon cell adhesion, oxidative inhibition of a protein tyrosine phosphatase promotes the phosphorylation/activation and the downstream signaling of FAK and, as a final event, cell adhesion and spreading onto fibronectin.


Assuntos
Adesão Celular/fisiologia , Membrana Celular/enzimologia , Células Eucarióticas/enzimologia , Proteínas Tirosina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células 3T3 , Animais , Células Eucarióticas/citologia , Fibroblastos/citologia , Fibroblastos/enzimologia , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Adesões Focais/metabolismo , Integrinas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Peso Molecular , Oxirredução , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
19.
Curr Cancer Drug Targets ; 19(10): 807-816, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30648509

RESUMO

BACKGROUND: The bisphosphonate Zoledronic acid (ZA) is a potent osteoclast inhibitor currently used in the clinic to reduce osteoporosis and cancer-induced osteolysis. Moreover, ZA exerts an anti-tumor effect in several tumors. Despite this evidence, the relevance of ZA in prostate cancer (PCa) is not completely understood. OBJECTIVE: To investigate the effect of ZA administration on the invasive properties of PC3 cells, which are characterised by RhoA-dependent amoeboid motility. METHODS: The effect of ZA administration on the in vitro invasive properties of PC3 cells was evaluated by cell migration in 3D collagen matrices, immunofluorescence and Boyden assays or transendothelial migration. Lung retention and colonization assays were performed to assess the efficacy of ZA administration in vivo. RESULTS: PC3 cells are characterised by RhoA-dependent amoeboid motility. We now report a clear inhibition of in vitro PC3 cell invasion and RhoA activity upon ZA treatment. Moreover, to confirm a specific role of ZA in the inhibition of amoeboid motility of PC3 cells, we demonstrate that ZA interferes only partially with PC3 cells showing a mesenchymal phenotype due to both treatment with conditioned medium of cancer associated fibroblasts or to the acquisition of chemoresistance. Furthermore, we demonstrate that ZA impairs adhesion to endothelial cells and the trans-endothelial cell migration, two essential properties characterising amoeboid motility and PC3 metastatic dissemination. In vivo experiments prove the ability of ZA to inhibit the metastatic process of PC3 cells as shown by the decrease in lung colonization. CONCLUSION: This study demonstrates that ZA inhibits Rho-dependent amoeboid motility of PC3 cells, thus suggesting ZA as a potential therapy to impede the metastatic dissemination of PC3 cells.


Assuntos
Movimento Celular , Osteoclastos/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Ácido Zoledrônico/farmacologia , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Animais , Conservadores da Densidade Óssea/farmacologia , Humanos , Masculino , Camundongos , Camundongos SCID , Células PC-3 , Neoplasias da Próstata/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína rhoA de Ligação ao GTP/metabolismo
20.
Oncogene ; 38(27): 5339-5355, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30936458

RESUMO

Cancer-associated fibroblasts (CAFs) are the major cellular stromal component of many solid tumors. In prostate cancer (PCa), CAFs establish a metabolic symbiosis with PCa cells, contributing to cancer aggressiveness through lactate shuttle. In this study, we report that lactate uptake alters the NAD+/NADH ratio in the cancer cells, which culminates with SIRT1-dependent PGC-1α activation and subsequent enhancement of mitochondrial mass and activity. The high exploitation of mitochondria results in tricarboxylic acid cycle deregulation, accumulation of oncometabolites and in the altered expression of mitochondrial complexes, responsible for superoxide generation. Additionally, cancer cells hijack CAF-derived functional mitochondria through the formation of cellular bridges, a phenomenon that we observed in both in vitro and in vivo PCa models. Our work reveals a crucial function of tumor mitochondria as the energy sensors and transducers of CAF-dependent metabolic reprogramming and underscores the reliance of PCa cells on CAF catabolic activity and mitochondria trading.


Assuntos
Mitocôndrias/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Fibroblastos/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , NAD/metabolismo , Invasividade Neoplásica , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA