Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Eukaryot Cell ; 14(2): 116-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25107923

RESUMO

Using serial-section transmission electron microscopy and three-dimensional (3D) electron tomography, we characterized membrane dynamics that accompany the construction of a nuclear exchange junction between mating cells in the ciliate Tetrahymena thermophila. Our methods revealed a number of previously unknown features. (i) Membrane fusion is initiated by the extension of hundreds of 50-nm-diameter protrusions from the plasma membrane. These protrusions extend from both mating cells across the intercellular space to fuse with membrane of the mating partner. (ii) During this process, small membrane-bound vesicles or tubules are shed from the plasma membrane and into the extracellular space within the junction. The resultant vesicle-filled pockets within the extracellular space are referred to as junction lumens. (iii) As junction lumens fill with extracellular microvesicles and swell, the plasma membrane limiting these swellings undergoes another deformation, pinching off vesicle-filled vacuoles into the cytoplasm (reclamation). (iv) These structures (resembling multivesicular bodies) seem to associate with autophagosomes abundant near the exchange junction. We propose a model characterizing the membrane-remodeling events that establish cytoplasmic continuity between mating Tetrahymena cells. We also discuss the possible role of nonvesicular lipid transport in conditioning the exchange junction lipid environment. Finally, we raise the possibility of an intercellular signaling mechanism involving microvesicle shedding and uptake.


Assuntos
Membrana Celular/metabolismo , Extensões da Superfície Celular/metabolismo , Junções Intercelulares/metabolismo , Tetrahymena thermophila/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Espaço Extracelular/metabolismo , Junções Intercelulares/ultraestrutura , Metabolismo dos Lipídeos , Vesículas Secretórias/metabolismo , Tetrahymena thermophila/fisiologia , Tetrahymena thermophila/ultraestrutura
2.
J Cell Sci ; 126(Pt 15): 3441-51, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23704354

RESUMO

Basal bodies and centrioles are conserved microtubule-based organelles the improper assembly of which leads to a number of diseases, including ciliopathies and cancer. Tubulin family members are conserved components of these structures that are integral to their proper formation and function. We have identified the ε-tubulin gene in Tetrahymena thermophila and detected the protein, through fluorescence of a tagged allele, to basal bodies. Immunoelectron microscopy has shown that ε-tubulin localizes primarily to the core microtubule scaffold. A complete genomic knockout of ε-tubulin has revealed that it is an essential gene required for the assembly and maintenance of the triplet microtubule blades of basal bodies. We have conducted site-directed mutagenesis of the ε-tubulin gene and shown that residues within the nucleotide-binding domain, longitudinal interacting domains, and C-terminal tail are required for proper function. A single amino acid change of Thr150, a conserved residue in the nucleotide-binding domain, to Val is a conditional mutation that results in defects in the spatial and temporal assembly of basal bodies as well as their stability. We have genetically separated functions for the domains of ε-tubulin and identified a novel role for the nucleotide-binding domain in the regulation of basal body assembly and stability.


Assuntos
Corpos Basais/fisiologia , Infecções por Cilióforos/metabolismo , Tetrahymena thermophila/fisiologia , Tubulina (Proteína)/fisiologia , Corpos Basais/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Centríolos/genética , Centríolos/metabolismo , Infecções por Cilióforos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
3.
J Cell Sci ; 124(Pt 17): 2891-6, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21878496

RESUMO

In budding yeast, the microtubule-organizing center is called the spindle pole body (SPB) and shares structural components with the centriole, the central core of the animal centrosome. During meiotic interphase I, the SPB is duplicated when DNA replication takes place. Duplicated SPBs are linked and then separate to form a bipolar spindle required for homolog separation in meiosis I. During interphase II, SPBs are duplicated again, in the absence of DNA replication, to form four SPBs that establish two spindles for sister-chromatid separation in meiosis II. Here, we report that the Aurora kinase Ipl1, which is necessary for sister-chromatid cohesion, is also required for maintenance of a tight association between duplicated SPBs during meiosis, which we term SPB cohesion. Premature loss of cohesion leads to SPB overduplication and the formation of multipolar spindles. By contrast, the Polo-like kinase Cdc5 is necessary for SPB duplication and interacts antagonistically with Ipl1 at the meiotic SPB to ensure proper SPB separation. Our data suggest that Ipl1 coordinates SPB dynamics with the two chromosome segregation cycles during yeast meiosis.


Assuntos
Meiose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomycetales/citologia , Fuso Acromático/enzimologia , Aurora Quinases , Centrossomo/enzimologia , Centrossomo/fisiologia , Interfase/fisiologia , Saccharomyces cerevisiae/enzimologia
4.
J Cell Biol ; 178(6): 905-12, 2007 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-17785518

RESUMO

Basal bodies organize the nine doublet microtubules found in cilia. Cilia are required for a variety of cellular functions, including motility and sensing stimuli. Understanding this biochemically complex organelle requires an inventory of the molecular components and the contribution each makes to the overall structure. We define a basal body proteome and determine the specific localization of basal body components in the ciliated protozoan Tetrahymena thermophila. Using a biochemical, bioinformatic, and genetic approach, we identify 97 known and candidate basal body proteins. 24 novel T. thermophila basal body proteins were identified, 19 of which were localized to the ultrastructural level, as seen by immunoelectron microscopy. Importantly, we find proteins from several structural domains within the basal body, allowing us to reveal how each component contributes to the overall organization. Thus, we present a high resolution localization map of basal body structure highlighting important new components for future functional studies.


Assuntos
Centríolos/metabolismo , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/metabolismo , Animais , Centríolos/ultraestrutura , Cílios/metabolismo , Cílios/ultraestrutura , Microscopia Eletrônica de Transmissão , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteoma/metabolismo , Tetrahymena thermophila/ultraestrutura
5.
Nat Cell Biol ; 5(1): 71-6, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12510196

RESUMO

Centrosomes nucleate microtubules and serve as poles of the mitotic spindle. Centrioles are a core component of centrosomes and duplicate once per cell cycle. We previously identified epsilon-tubulin as a new member of the tubulin superfamily that localizes asymmetrically to the two centrosomes after duplication. We show that recruitment of epsilon-tubulin to the new centrosome can only occur after exit from S phase and that epsilon-tubulin is associated with the sub-distal appendages of mature centrioles. Xenopus laevis epsilon-tubulin was cloned and shown to be similar to human epsilon-tubulin in both sequence and localization. Depletion of epsilon-tubulin from Xenopus egg extracts blocks centriole duplication in S phase and formation of organized centrosome-independent microtubule asters in M phase. We conclude that epsilon-tubulin is a component of the sub-distal appendages of the centriole, explaining its asymmetric localization to old and new centrosomes, and that epsilon-tubulin is required for centriole duplication and organization of the pericentriolar material.


Assuntos
Ciclo Celular/fisiologia , Centríolos/ultraestrutura , Microtúbulos/ultraestrutura , Tubulina (Proteína)/metabolismo , Animais , Sequência de Bases , Células Cultivadas , Proteínas do Citoesqueleto , Primers do DNA , Feminino , Proteínas de Ligação ao GTP/metabolismo , Zíper de Leucina , Masculino , Microscopia Imunoeletrônica , Proteínas Nucleares , Óvulo/citologia , Óvulo/fisiologia , Isoformas de Proteínas/metabolismo , Ranidae , Fase S , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/citologia , Espermatozoides/fisiologia
6.
J Cell Biol ; 174(5): 665-75, 2006 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-16923827

RESUMO

The spindle pole body (SPB) is the sole site of microtubule nucleation in Saccharomyces cerevisiae; yet, details of its assembly are poorly understood. Integral membrane proteins including Mps2 anchor the soluble core SPB in the nuclear envelope. Adjacent to the core SPB is a membrane-associated SPB substructure known as the half-bridge, where SPB duplication and microtubule nucleation during G1 occurs. We found that the half-bridge component Mps3 is the budding yeast member of the SUN protein family (Sad1-UNC-84 homology) and provide evidence that it interacts with the Mps2 C terminus to tether the half-bridge to the core SPB. Mutants in the Mps3 SUN domain or Mps2 C terminus have SPB duplication and karyogamy defects that are consistent with the aberrant half-bridge structures we observe cytologically. The interaction between the Mps3 SUN domain and Mps2 C terminus is the first biochemical link known to connect the half-bridge with the core SPB. Association with Mps3 also defines a novel function for Mps2 during SPB duplication.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Fuso Acromático/metabolismo , Sequência de Aminoácidos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Quinase do Ponto de Checagem 2 , Segregação de Cromossomos , Proteínas de Membrana/química , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
7.
Eukaryot Cell ; 8(6): 899-912, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19286988

RESUMO

We describe a novel pair of nested genes, CDA12 and CDA13, from Tetrahymena thermophila. Both are implicated in membrane trafficking associated with cell division and conjugation. Green fluorescent protein localization reveals Cda12p decoration of diverse membrane-bound compartments, including mobile, subcortical tubulovesicular compartments; perinuclear vesicles; and candidates for recycling endosomes. Cda13p decorates intracellular foci located adjacent to cortically aligned mitochondria and their neighboring Golgi networks. The expression of antisense CDA12 RNA in transformants produces defects in cytokinesis, macronuclear segregation, and the processing of pinosomes to downstream compartments. Antisense CDA13 RNA expression produces a conjugation phenotype, resulting in the failure of mating pairs to separate, as well as failures in postconjugation cytokinesis and macronuclear fission. This study offers insight into the membrane trafficking events linking endosome and Golgi network activities, cytokinesis, and karyokinesis and the unique membrane-remodeling events that accompany conjugation in the ciliate T. thermophila. We also highlight an unusual aspect of genome organization in Tetrahymena, namely, the existence of nested, antisense genes.


Assuntos
Membrana Celular/metabolismo , Genes Inseridos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Animais , Membrana Celular/genética , Citocinese , Dados de Sequência Molecular , Transporte Proteico , Tetrahymena thermophila/citologia
8.
Mol Biol Cell ; 18(6): 2047-56, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17392514

RESUMO

A variety of spindle and kinetochore defects have been shown to induce a mitotic delay through activation of the spindle checkpoint. With the aim of identifying novel mitotic defects we carried out a mad1 synthetic lethal screen in budding yeast. In this screen, four novel alleles of sfi1 were isolated. SFI1 is an essential gene, previously identified through its interaction with centrin/CDC31 and shown to be required for spindle pole body (SPB) duplication. The new mutations were all found in the C-terminal domain of Sfi1p, which has no known function, but it is well conserved among budding yeasts. Analysis of the novel sfi1 mutants, through a combination of light and electron microscopy, revealed duplicated SPBs <0.3 microm apart. Importantly, these SPBs have completed duplication, but they are not separated, suggesting a possible defect in splitting of the bridge. We discuss possible roles for Sfi1p in this step in bipolar spindle assembly.


Assuntos
Alelos , Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/genética , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Repressoras/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Fuso Acromático/ultraestrutura
9.
Dev Cell ; 7(2): 263-74, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15296722

RESUMO

Duplication of the Saccharomyces cerevisiae spindle pole body (SPB) once per cell cycle is essential for bipolar spindle formation and accurate chromosome segregation during mitosis. We have investigated the role that the major yeast cyclin-dependent kinase Cdc28/Cdk1 plays in assembly of a core SPB component, Spc42, to better understand how SPB duplication is coordinated with cell cycle progression. Cdc28 is required for SPB duplication and Spc42 assembly, and we found that Cdc28 directly phosphorylates Spc42 to promote its assembly into the SPB. The Mps1 kinase, previously shown to regulate Spc42 phosphorylation and assembly, is also a Cdc28 substrate, and Cdc28 phosphorylation of Mps1 is needed to maintain wild-type levels of Mps1 in cells. Analysis of nonphosphorylatable mutants in SPC42 and MPS1 indicates that direct Spc42 phosphorylation and indirect regulation of Spc42 through Mps1 are two overlapping pathways by which Cdc28 regulates Spc42 assembly and SPB duplication during the cell cycle.


Assuntos
Proteína Quinase CDC2/fisiologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas do Citoesqueleto/fisiologia , Fosfoproteínas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Fuso Acromático , Alelos , Ciclo Celular , Centrossomo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Espectrometria de Massas , Mitose , Modelos Biológicos , Mutação , Fosfoproteínas/metabolismo , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/química , Temperatura , Treonina/química
10.
J Cell Biol ; 159(6): 945-56, 2002 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-12486115

RESUMO

Accurate duplication of the Saccharomyces cerevisiae spindle pole body (SPB) is required for formation of a bipolar mitotic spindle. We identified mutants in SPB assembly by screening a temperature-sensitive collection of yeast for defects in SPB incorporation of a fluorescently marked integral SPB component, Spc42p. One SPB assembly mutant contained a mutation in a previously uncharacterized open reading frame that we call MPS3 (for monopolar spindle). mps3-1 mutants arrest in mitosis with monopolar spindles at the nonpermissive temperature, suggesting a defect in SPB duplication. Execution point experiments revealed that MPS3 function is required for the first step of SPB duplication in G1. Like cells containing mutations in two other genes required for this step of SPB duplication (CDC31 and KAR1), mps3-1 mutants arrest with a single unduplicated SPB that lacks an associated half-bridge. MPS3 encodes an essential integral membrane protein that localizes to the SPB half-bridge. Genetic interactions between MPS3 and CDC31 and binding of Cdc31p to Mps3p in vitro, as well as the fact that Cdc31p localization to the SPB is partially dependent on Mps3p function, suggest that one function for Mps3p during SPB duplication is to recruit Cdc31p, the yeast centrin homologue, to the half-bridge.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Fuso Acromático/metabolismo , Motivos de Aminoácidos , Western Blotting , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitose , Modelos Biológicos , Mutação , Proteínas Nucleares , Fenótipo , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Fatores de Tempo
11.
Mol Biol Cell ; 17(4): 1959-70, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16436507

RESUMO

The spindle pole body (SPB) in Saccharomyces cerevisiae functions to nucleate and organize spindle microtubules, and it is embedded in the nuclear envelope throughout the yeast life cycle. However, the mechanism of membrane insertion of the SPB has not been elucidated. Ndc1p is an integral membrane protein that localizes to SPBs, and it is required for insertion of the SPB into the nuclear envelope during SPB duplication. To better understand the function of Ndc1p, we performed a dosage suppressor screen using the ndc1-39 temperature-sensitive allele. We identified an essential SPB component, Nbp1p. NBP1 shows genetic interactions with several SPB genes in addition to NDC1, and two-hybrid analysis revealed that Nbp1p binds to Ndc1p. Furthermore, Nbp1p is in the Mps2p-Bbp1p complex in the SPB. Immunoelectron microscopy confirmed that Nbp1p localizes to the SPB, suggesting a function at this location. Consistent with this hypothesis, nbp1-td (a degron allele) cells fail in SPB duplication upon depletion of Nbp1p. Importantly, these cells exhibit a "dead" SPB phenotype, similar to cells mutant in MPS2, NDC1, or BBP1. These results demonstrate that Nbp1p is a SPB component that acts in SPB duplication at the point of SPB insertion into the nuclear envelope.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Alelos , Proteínas de Ligação a Calmodulina , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Membrana Celular/metabolismo , Proteínas do Citoesqueleto , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Genes Essenciais , Genes Fúngicos , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/genética , Microtúbulos/metabolismo , Mitose/genética , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/química , Fuso Acromático/genética , Técnicas do Sistema de Duplo-Híbrido
12.
PLoS Biol ; 3(5): e156, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15884975

RESUMO

Infection of human cells with poliovirus induces the proliferation of double-membraned cytoplasmic vesicles whose surfaces are used as the sites of viral RNA replication and whose origin is unknown. Here, we show that several hallmarks of cellular autophagosomes can be identified in poliovirus-induced vesicles, including colocalization of LAMP1 and LC3, the human homolog of Saccharomyces cerevisiae Atg8p, and staining with the fluorophore monodansylcadaverine followed by fixation. Colocalization of LC3 and LAMP1 was observed early in the poliovirus replicative cycle, in cells infected with rhinoviruses 2 and 14, and in cells that express poliovirus proteins 2BC and 3A, known to be sufficient to induce double-membraned vesicles. Stimulation of autophagy increased poliovirus yield, and inhibition of the autophagosomal pathway by 3-methyladenine or by RNA interference against mRNAs that encode two different proteins known to be required for autophagy decreased poliovirus yield. We propose that, for poliovirus and rhinovirus, components of the cellular machinery of autophagosome formation are subverted to promote viral replication. Although autophagy can serve in the innate immune response to microorganisms, our findings are inconsistent with a role for the induced autophagosome-like structures in clearance of poliovirus. Instead, we argue that these double-membraned structures provide membranous supports for viral RNA replication complexes, possibly enabling the nonlytic release of cytoplasmic contents, including progeny virions, from infected cells.


Assuntos
Autofagia/fisiologia , Fagossomos/fisiologia , Poliovirus/fisiologia , Vírus de RNA/fisiologia , Sequência de Bases , Primers do DNA , Técnica de Fratura por Congelamento , Humanos , Dados de Sequência Molecular , Poliovirus/patogenicidade , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/análise , Mapeamento por Restrição , Replicação Viral
13.
Mol Biol Cell ; 16(8): 3606-19, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15944224

RESUMO

Centrins, small calcium binding EF-hand proteins, function in the duplication of a variety of microtubule organizing centers. These include centrioles in humans, basal bodies in green algae, and spindle pole bodies in yeast. The ciliate Tetrahymena thermophila contains at least four centrin genes as determined by sequence homology, and these have distinct localization and expression patterns. CEN1's role at the basal body was examined more closely. The Cen1 protein localizes primarily to two locations: one is the site at the base of the basal body where duplication is initiated. The other is the transition zone between the basal body and axoneme. CEN1 is an essential gene, the deletion of which results in the loss of basal bodies, which is likely due to defects in both basal body duplication and basal body maintenance. Analysis of the three other centrins indicates that two of them function at microtubule-rich structures unique to ciliates, whereas the fourth is not expressed under conditions examined in this study, although when artificially expressed it localizes to basal bodies. This study provides evidence that in addition to its previously known function in the duplication of basal bodies, centrin is also important for the integrity of these organelles.


Assuntos
Proteínas de Ligação ao Cálcio/classificação , Proteínas de Ligação ao Cálcio/metabolismo , Tetrahymena thermophila/citologia , Tetrahymena thermophila/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Divisão Celular , Expressão Gênica , Humanos , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Família Multigênica/genética , Filogenia , Alinhamento de Sequência , Tetrahymena thermophila/química , Tetrahymena thermophila/genética
14.
Mol Biol Cell ; 16(3): 1178-88, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15635095

RESUMO

Meiotic chromosome segregation leads to the production of haploid germ cells. During meiosis I (MI), the paired homologous chromosomes are separated. Meiosis II (MII) segregation leads to the separation of paired sister chromatids. In the budding yeast Saccharomyces cerevisiae, both of these divisions take place in a single nucleus, giving rise to the four-spored ascus. We have modeled the microtubules in 20 MI and 15 MII spindles by using reconstruction from electron micrographs of serially sectioned meiotic cells. Meiotic spindles contain more microtubules than their mitotic counterparts, with the highest number in MI spindles. It is possible to differentiate between MI versus MII spindles based on microtubule numbers and organization. Similar to mitotic spindles, kinetochores in either MI or MII are attached by a single microtubule. The models indicate that the kinetochores of paired homologous chromosomes in MI or sister chromatids in MII are separated at metaphase, similar to mitotic cells. Examination of both MI and MII spindles reveals that anaphase A likely occurs in addition to anaphase B and that these movements are concurrent. This analysis offers a structural basis for considering meiotic segregation in yeast and for the analysis of mutants defective in this process.


Assuntos
Cromossomos Fúngicos/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/química , Fuso Acromático/ultraestrutura , Anáfase , Núcleo Celular/metabolismo , Cromátides/ultraestrutura , Segregação de Cromossomos , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde/química , Haploidia , Processamento de Imagem Assistida por Computador , Cinetocoros/metabolismo , Meiose , Microscopia Eletrônica , Microtúbulos/metabolismo , Modelos Teóricos , Mutação , Fenótipo
15.
Mol Biol Cell ; 14(7): 2999-3012, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12857881

RESUMO

Improved methods of specimen preparation and dual-axis electron tomography have been used to study the structure and organization of basal bodies in the unicellular alga Chlamydomonas reinhardtii. Novel structures have been found in both wild type and strains with mutations that affect specific tubulin isoforms. Previous studies have shown that strains lacking delta-tubulin fail to assemble the C-tubule of the basal body. Tomographic reconstructions of basal bodies from the delta-tubulin deletion mutant uni3-1 have confirmed that basal bodies contain mostly doublet microtubules. Our methods now show that the stellate fibers, which are present only in the transition zone of wild-type cells, repeat within the core of uni3-1 basal bodies. The distal striated fiber is incomplete in this mutant, rootlet microtubules can be misplaced, and multiflagellate cells have been observed. A suppressor of uni3-1, designated tua2-6, contains a mutation in alpha-tubulin. tua2-6; uni3-1 cells build both flagella, yet they retain defects in basal body structure and in rootlet microtubule positioning. These data suggest that the presence of specific tubulin isoforms in Chlamydomonas directly affects the assembly and function of both basal bodies and basal body-associated structures.


Assuntos
Centríolos/fisiologia , Chlamydomonas reinhardtii/fisiologia , Microtúbulos/fisiologia , Tubulina (Proteína)/metabolismo , Animais , Centríolos/genética , Centríolos/ultraestrutura , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestrutura , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica , Microtúbulos/genética , Microtúbulos/ultraestrutura , Mutação , Tubulina (Proteína)/genética
16.
Mol Biol Cell ; 15(4): 1711-23, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14767068

RESUMO

The polo-box domain of the budding yeast polo kinase Cdc5p plays an essential role for targeting the catalytic activity of Cdc5p to spindle pole bodies (SPBs) and cytokinetic neck-filaments. Here, we report the isolation of Bbp1p as a polo-box interacting protein by a yeast two-hybrid screen. Bbp1p localizes to the periphery of the central plaque of the SPB and plays an important role in SPB duplication. Similarly, Cdc5p localized to the cytoplasmic periphery of the SPB. In vitro binding studies showed that Cdc5p interacted with the N-terminal domain of Bbp1p (Bbp1pDeltaC), but apparently not with Mps2p, a component shown to form a stable complex with Bbp1p. In addition, Bbp1p, but likely not Mps2p, was required for proper localization of Cdc5p to the SPB. The C-terminal coiled-coil domain of Bbp1p (Bbp1p(243-385)), which is crucial for both the homodimerization and the SPB localization, could target the localization-defective Cdc5pDeltaC to the SPB and induce the release of Cdc14p from the nucleolus. Consistent with this observation, expression of CDC5DeltaC-BBP1(243-385) under CDC5 promoter control partially complemented the cdc5Delta defect. These data suggest that Bbp1pDeltaC interacts with the polo-box domain of Cdc5p, and this interaction is critical for the subcellular localization and mitotic functions of Cdc5p.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas dos Microtúbulos/fisiologia , Mitose , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Fuso Acromático , Catálise , Ciclo Celular , Proteínas de Ciclo Celular/química , Divisão Celular , Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Dimerização , Genótipo , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde , Immunoblotting , Proteínas Luminescentes/metabolismo , Microscopia Imunoeletrônica , Modelos Biológicos , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/química , Proteínas de Ligação a RNA , Proteínas Recombinantes/química , Proteínas de Saccharomyces cerevisiae/química , Temperatura , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido
17.
Cold Spring Harb Protoc ; 2017(3)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28250212

RESUMO

Three-dimensional imaging of cells using electron tomography enables analysis of cell structure at unprecedented resolution. The preparation of cells for tomography using rapid freezing followed by freeze-substitution is an essential first step to ensure the optimal preservation of the cell structure for 3D studies. This protocol outlines a method for obtaining well-preserved cells using high-pressure freezing followed by freeze-substitution. We have found that this method is particularly well suited for electron tomography studies and has the added bonus of preserving antigenicity for immuno-electron microscopy. The steps involved in imaging cells and performing tomographic analysis of cellular structures are also outlined.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Congelamento , Preservação Biológica , Saccharomyces cerevisiae/ultraestrutura , Substituição ao Congelamento , Estruturas Fúngicas/ultraestrutura , Pressão Hidrostática , Imageamento Tridimensional
18.
Cold Spring Harb Protoc ; 2017(3)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28250232

RESUMO

Saccharomyces cerevisiae has been an important model system for numerous cellular, genetic, and molecular studies. However, this small eukaryote presents a challenge for imaging at the electron microscope level. Preparation of yeast using high-pressure freezing followed by freeze-substitution (HPF/FS) results in excellent preservation of cell structure in these difficult-to-fix samples. In particular, cells prepared by HPF/FS can be used for 3D electron tomography (ET) studies where optimum cell preservation is critical. Here, we discuss the advantages of using HPF/FS for ET and show examples of the utility of this method for building yeast cell structures in three dimensions.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Estruturas Fúngicas/ultraestrutura , Imageamento Tridimensional/métodos , Saccharomyces cerevisiae/ultraestrutura , Substituição ao Congelamento , Congelamento , Preservação Biológica
19.
Cold Spring Harb Protoc ; 2017(1)2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049777

RESUMO

Freezing samples while simultaneously subjecting them to a rapid increase in pressure, which inhibits ice crystal formation, is a reliable method for cryofixing fission yeast. The procedure consists simply of harvesting cells and loading them into a high-pressure freezer (HPF), and then operating the device. If equipment for high-pressure freezing is not available, fission yeast can be frozen by plunging a monolayer of cells into a liquid cryogen, usually ethane or propane. Unlike the HPF, where relatively large volumes of cells can be frozen in a single run, plunge freezing requires cells to be dispersed in a layer <20 µm thick. Unless frozen cells are to be imaged in the vitreous state, they must be fixed, dehydrated, and embedded for subsequent study by transmission electron microscopy; warming frozen cells without fixation badly damages cell structure. Fixation is best accomplished by freeze-substitution, a process in which frozen water is removed from samples by a water-miscible solvent that is liquid at a temperature low enough to prevent the cellular water from recrystallizing. Low concentrations of chemical fixatives and stains are generally added to this solvent such that they permeate the cells as the water is replaced. The activity of these additives is quite limited at the low temperatures required for minimizing ice crystal formation, but they are in the right place to react effectively as the cells warm up. Step-by-step protocols for HPF, plunge freezing, and freeze-substitution are provided here.


Assuntos
Congelamento , Técnicas Microbiológicas/métodos , Microscopia Eletrônica/métodos , Schizosaccharomyces/ultraestrutura , Fixadores/metabolismo , Pressão Hidrostática
20.
Cold Spring Harb Protoc ; 2017(1)2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049778

RESUMO

Electron microscopy (EM) immunolocalization of antigens in fission yeast can be accomplished with cells processed by rapid freezing and freeze-substitution followed by embedding in acrylic or methacrylate resins. Microtome sections of embedded cells are collected onto EM grids. Primary antibodies to the antigen of interest, followed by secondary antibodies conjugated to colloidal gold, are allowed to bind to antigens at the surface of these plastic sections. This type of postembed labeling provides information on antigen localization to a resolution of 10-20 nm, depending on the size of the metal particle used, the form of the antibody (Fab vs. complete IgG or IgM), and whether direct or indirect labeling is used. The method has the potential to map macromolecules in three dimensions in a relatively large volume when thin (30-60-nm) serial sections are labeled, imaged, aligned, and modeled to create a representative volume. The biggest challenge of this technique is the necessary compromise between the preservation of cellular ultrastructure and the preservation of antigen reactivity. The protocols described here show how to immunolabel samples for EM and include suggestions for overcoming challenges related to antigen preservation.


Assuntos
Proteínas Fúngicas/análise , Imuno-Histoquímica/métodos , Microscopia Imunoeletrônica/métodos , Organelas/química , Schizosaccharomyces/química , Schizosaccharomyces/ultraestrutura , Anticorpos Antifúngicos/metabolismo , Congelamento , Inclusão em Plástico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA