Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 91(10): 6800-6807, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31025851

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a powerful technique for spatially resolved metabolomics. A variation on MALDI, termed metal oxide laser ionization (MOLI), capitalizes on the unique property of cerium(IV) oxide (CeO2) to induce laser-catalyzed fatty acyl cleavage from lipids and has been utilized for bacterial identification. In this study, we present the development and utilization of CeO2 as an MSI catalyst. The method was developed using a MALDI TOF instrument in negative ion mode, equipped with a high frequency laser. Instrument parameters for MOLI MS fatty acid catalysis with CeO2 were optimized with phospholipid standards and fatty acid catalysis was confirmed using lipid extracts from reference bacterial strains, and sample preparation was optimized using mouse brain tissue. MOLI MSI was applied to the imaging of normal mouse brain revealing differentiable fatty acyl pools in myelinated and nonmyelinated regions. Similarly, MOLI MSI showed distinct fatty acyl composition in tumor regions of a patient derived xenograft mouse model of glioblastoma. To assess the potential of MOLI MSI to detect pathogens directly from tissue, a pseudoinfection model was prepared by spotting Escherichia coli lipid extracts on mouse brain tissue sections and imaged by MOLI MSI. The spotted regions were molecularly resolved from the supporting mouse brain tissue by the diagnostic odd-chained fatty acids and reflected control bacterial MOLI MS signatures. We describe MOLI MSI for the first time and highlight its potential for spatially resolved fatty acyl analysis, characterization of fatty acyl composition in tumors, and its potential for pathogen detection directly from tissue.


Assuntos
Cério/química , Ácidos Graxos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Bactérias/química , Encéfalo/metabolismo , Feminino , Glioblastoma/química , Humanos , Camundongos Nus
2.
NPJ Breast Cancer ; 7(1): 116, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504095

RESUMO

Optimal resection of breast tumors requires removing cancer with a rim of normal tissue while preserving uninvolved regions of the breast. Surgical and pathological techniques that permit rapid molecular characterization of tissue could facilitate such resections. Mass spectrometry (MS) is increasingly used in the research setting to detect and classify tumors and has the potential to detect cancer at surgical margins. Here, we describe the ex vivo intraoperative clinical application of MS using a liquid micro-junction surface sample probe (LMJ-SSP) to assess breast cancer margins. In a midpoint analysis of a registered clinical trial, surgical specimens from 21 women with treatment naïve invasive breast cancer were prospectively collected and analyzed at the time of surgery with subsequent histopathological determination. Normal and tumor breast specimens from the lumpectomy resected by the surgeon were smeared onto glass slides for rapid analysis. Lipidomic profiles were acquired from these specimens using LMJ-SSP MS in negative ionization mode within the operating suite and post-surgery analysis of the data revealed five candidate ions separating tumor from healthy tissue in this limited dataset. More data is required before considering the ions as candidate markers. Here, we present an application of ambient MS within the operating room to analyze breast cancer tissue and surgical margins. Lessons learned from these initial promising studies are being used to further evaluate the five candidate biomarkers and to further refine and optimize intraoperative MS as a tool for surgical guidance in breast cancer.

3.
Clin Breast Cancer ; 20(2): 145-151.e2, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31558424

RESUMO

PURPOSE: This pilot study was performed to test our ability to administer neratinib monotherapy before clinically recommended craniotomy in patients with HER2-positive metastatic breast cancer to the central nervous system, to examine neratinib's central nervous system penetration at craniotomy, and to examine postoperative neratinib maintenance. PATIENTS AND METHODS: Patients with HER2-positive brain metastases undergoing clinically indicated cranial resection of a parenchymal tumor received neratinib 240 mg orally once a day for 7 to 21 days preoperatively, and resumed therapy postoperatively in 28-day cycles. Exploratory evaluations of time to disease progression, survival, and correlative tissue, cerebrospinal fluid (CSF), and blood-based analyses examining neratinib concentrations were planned. The study was registered at ClinicalTrials.gov under number NCT01494662. RESULTS: We enrolled 5 patients between May 22, 2013, and October 18, 2016. As of March 1, 2019, patients had remained on the study protocol for 1 to 75+ postoperative cycles pf therapy. Two patients had grade 3 diarrhea. Evaluation of the CSF showed low concentrations of neratinib; nonetheless, 2 patients continued to receive therapy without disease progression for at least 13 cycles, with one on-study treatment lasting for nearly 6 years. Neratinib distribution in surgical tissue was variable for 1 patient, while specimens from 2 others did not produce conclusive results as a result of limited available samples. CONCLUSION: Neratinib resulted in expected rates of diarrhea in this small cohort, with 2 of 5 patients receiving the study treatment for durable periods. Although logistically challenging, we were able to test a limited number of CSF- and parenchymal-based neratinib concentrations. Our findings from resected tumor tissue in one patient revealed heterogeneity in drug distribution and tumor histopathology.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Encefálicas/terapia , Neoplasias da Mama/patologia , Quinolinas/administração & dosagem , Administração Oral , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/líquido cefalorraquidiano , Neoplasias Encefálicas/secundário , Mama/patologia , Mama/cirurgia , Neoplasias da Mama/terapia , Quimioterapia Adjuvante/métodos , Craniotomia , Esquema de Medicação , Feminino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Projetos Piloto , Quinolinas/efeitos adversos , Quinolinas/farmacocinética , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Distribuição Tecidual , Resultado do Tratamento
4.
NPJ Precis Oncol ; 3: 17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31286061

RESUMO

Matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) is an emerging analytical technique, which generates spatially resolved proteomic and metabolomic images from tissue specimens. Conventional MALDI MSI processing and data acquisition can take over 30 min, limiting its clinical utility for intraoperative diagnostics. We present a rapid MALDI MSI method, completed under 5 min, including sample preparation and analysis, providing a workflow compatible with the clinical frozen section procedure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA