Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Soft Matter ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046306

RESUMO

The membrane curvature of cells and intracellular compartments continuously adapts to enable cells to perform vital functions, from cell division to signal trafficking. Understanding how membrane geometry affects these processes in vivo is challenging because of the biochemical and geometrical complexity as well as the short time and small length scales involved in cellular processes. By contrast, in vitro model membranes with engineered curvature would provide a versatile platform for this investigation and applications to biosensing and biocomputing. Here, we present a strategy that allows fabrication of lipid membranes with designed shape by combining 3D micro-printing and replica-molding lithography with polydimethylsiloxane to create curved micrometer-sized scaffolds with virtually any geometry. The resulting supported lipid membranes are homogeneous and fluid. We demonstrate the versatility of the system by fabricating structures of interesting combinations of mean and Gaussian curvature. We study the lateral phase separation and how local curvature influences the effective diffusion coefficient. Overall, we offer a bio-compatible platform for understanding curvature-dependent cellular processes and developing programmable bio-interfaces for living cells and nanostructures.

3.
Elife ; 132024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189410

RESUMO

We formulate a hydrodynamic theory of confluent epithelia: i.e. monolayers of epithelial cells adhering to each other without gaps. Taking advantage of recent progresses toward establishing a general hydrodynamic theory of p-atic liquid crystals, we demonstrate that collectively migrating epithelia feature both nematic (i.e. p = 2) and hexatic (i.e. p = 6) orders, with the former being dominant at large and the latter at small length scales. Such a remarkable multiscale liquid crystal order leaves a distinct signature in the system's structure factor, which exhibits two different power-law scaling regimes, reflecting both the hexagonal geometry of small cells clusters and the uniaxial structure of the global cellular flow. We support these analytical predictions with two different cell-resolved models of epithelia - i.e. the self-propelled Voronoi model and the multiphase field model - and highlight how momentum dissipation and noise influence the range of fluctuations at small length scales, thereby affecting the degree of cooperativity between cells. Our construction provides a theoretical framework to conceptualize the recent observation of multiscale order in layers of Madin-Darby canine kidney cells and pave the way for further theoretical developments.


Assuntos
Hidrodinâmica , Cristais Líquidos , Animais , Cães , Células Madin Darby de Rim Canino , Epitélio , Cristais Líquidos/química , Movimento (Física)
4.
Nat Commun ; 15(1): 5692, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38971812

RESUMO

Cluster formation of microscopic swimmers is key to the formation of biofilms and colonies, efficient motion and nutrient uptake, but, in the absence of other interactions, requires high swimmer concentrations to occur. Here we experimentally and numerically show that cluster formation can be dramatically enhanced by an anisotropic swimmer shape. We analyze a class of model microswimmers with a shape that can be continuously tuned from spherical to bent and straight rods. In all cases, clustering can be described by Michaelis-Menten kinetics governed by a single scaling parameter that depends on particle density and shape only. We rationalize these shape-dependent dynamics from the interplay between interlocking probability and cluster stability. The bent rod shape promotes assembly in an interlocking fashion even at vanishingly low particle densities and we identify the most efficient shape to be a semicircle. Our work provides key insights into how shape can be used to rationally design out-of-equilibrium self-organization, key to creating active functional materials and processes that require two-component assembly with high fidelity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA