Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Ther ; 29(9): 2841-2853, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940155

RESUMO

A primary challenge in lentiviral gene therapy of ß-hemoglobinopathies is to maintain low vector copy numbers to avoid genotoxicity while being reliably therapeutic for all genotypes. We designed a high-titer lentiviral vector, LVß-shα2, that allows coordinated expression of the therapeutic ßA-T87Q-globin gene and of an intron-embedded miR-30-based short hairpin RNA (shRNA) selectively targeting the α2-globin mRNA. Our approach was guided by the knowledge that moderate reduction of α-globin chain synthesis ameliorates disease severity in ß-thalassemia. We demonstrate that LVß-shα2 reduces α2-globin mRNA expression in erythroid cells while keeping α1-globin mRNA levels unchanged and ßA-T87Q-globin gene expression identical to the parent vector. Compared with the first ßA-T87Q-globin lentiviral vector that has received conditional marketing authorization, BB305, LVß-shα2 shows 1.7-fold greater potency to improve α/ß ratios. It may thus result in greater therapeutic efficacy and reliability for the most severe types of ß-thalassemia and provide an improved benefit/risk ratio regardless of the ß-thalassemia genotype.


Assuntos
Vetores Genéticos/administração & dosagem , RNA Interferente Pequeno/genética , alfa-Globinas/genética , Globinas beta/genética , Talassemia beta/genética , Linhagem Celular , Células Cultivadas , Regulação para Baixo , Células Eritroides/citologia , Células Eritroides/metabolismo , Genótipo , Humanos , Células K562 , Lentivirus/genética , Lentivirus/fisiologia , MicroRNAs/antagonistas & inibidores , Cultura Primária de Células , Carga Viral , Talassemia beta/terapia
2.
Mol Ther ; 26(2): 480-495, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29221807

RESUMO

Although gene transfer to hematopoietic stem cells (HSCs) has shown therapeutic efficacy in recent trials for several individuals with inherited disorders, transduction incompleteness of the HSC population remains a hurdle to yield a cure for all patients with reasonably low integrated vector numbers. In previous attempts at HSC selection, massive loss of transduced HSCs, contamination with non-transduced cells, or lack of applicability to large cell populations has rendered the procedures out of reach for human applications. Here, we fused codon-optimized puromycin N-acetyltransferase to herpes simplex virus thymidine kinase. When expressed from a ubiquitous promoter within a complex lentiviral vector comprising the ßAT87Q-globin gene, viral titers and therapeutic gene expression were maintained at effective levels. Complete selection and preservation of transduced HSCs were achieved after brief exposure to puromycin in the presence of MDR1 blocking agents, suggesting the procedure's suitability for human clinical applications while affording the additional safety of conditional suicide.


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Transdução Genética , Globinas beta/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Genes Transgênicos Suicidas , Terapia Genética/métodos , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Camundongos , Camundongos Transgênicos , Transgenes
3.
J Proteome Res ; 15(5): 1515-23, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-26999449

RESUMO

Affinity purifications followed by mass spectrometric analysis are used to identify protein-protein interactions. Because quantitative proteomic data are noisy, it is necessary to develop statistical methods to eliminate false-positives and identify true partners. We present here a novel approach for filtering false interactors, named "SAFER" for mass Spectrometry data Analysis by Filtering of Experimental Replicates, which is based on the reproducibility of the replicates and the fold-change of the protein intensities between bait and control. To identify regulators or targets of autophagy, we characterized the interactors of LGG1, a ubiquitin-like protein involved in autophagosome formation in C. elegans. LGG-1 partners were purified by affinity, analyzed by nanoLC-MS/MS mass spectrometry, and quantified by a label-free proteomic approach based on the mass spectrometric signal intensity of peptide precursor ions. Because the selection of confident interactions depends on the method used for statistical analysis, we compared SAFER with several statistical tests and different scoring algorithms on this set of data. We show that SAFER recovers high-confidence interactors that have been ignored by the other methods and identified new candidates involved in the autophagy process. We further validated our method on a public data set and conclude that SAFER notably improves the identification of protein interactors.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteômica/métodos , Algoritmos , Animais , Autofagia , Proteínas de Caenorhabditis elegans/análise , Interpretação Estatística de Dados , Bases de Dados de Proteínas , Proteínas Associadas aos Microtúbulos/análise , Ligação Proteica , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
4.
J Clin Med ; 12(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36769694

RESUMO

Hearing loss, the most common human sensory defect worldwide, is a major public health problem. About 70% of congenital forms and 25% of adult-onset forms of deafness are of genetic origin. In total, 136 deafness genes have already been identified and there are thought to be several hundred more awaiting identification. However, there is currently no cure for sensorineural deafness. In recent years, translational research studies have shown gene therapy to be effective against inherited inner ear diseases, and the application of this technology to humans is now within reach. We provide here a comprehensive and practical overview of current advances in gene therapy for inherited deafness, with and without an associated vestibular defect. We focus on the different gene therapy approaches, considering their prospects, including the viral vector used, and the delivery route. We also discuss the clinical application of the various strategies, their strengths, weaknesses, and the challenges to be overcome.

5.
PeerJ ; 10: e14204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353604

RESUMO

Background: Protein-protein interactions (PPIs) are essential to almost every process in a cell. Analysis of PPI networks gives insights into the functional relationships among proteins and may reveal important hub proteins and sub-networks corresponding to functional modules. Several good tools have been developed for PPI network analysis but they have certain limitations. Most tools are suited for studying PPI in only a small number of model species, and do not allow second-order networks to be built, or offer relevant functions for their analysis. To overcome these limitations, we have developed APPINetwork (Analysis of Protein-protein Interaction Networks). The aim was to produce a generic and user-friendly package for building and analyzing a PPI network involving proteins of interest from any species as long they are stored in a database. Methods: APPINetwork is an open-source R package. It can be downloaded and installed on the collaborative development platform GitLab (https://forgemia.inra.fr/GNet/appinetwork). A graphical user interface facilitates its use. Graphical windows, buttons, and scroll bars allow the user to select or enter an organism name, choose data files and network parameters or methods dedicated to network analysis. All functions are implemented in R, except for the script identifying all proteins involved in the same biological process (developed in C) and the scripts formatting the BioGRID data file and generating the IDs correspondence file (implemented in Python 3). PPI information comes from private resources or different public databases (such as IntAct, BioGRID, and iRefIndex). The package can be deployed on Linux and macOS operating systems (OS). Deployment on Windows is possible but it requires the prior installation of Rtools and Python 3. Results: APPINetwork allows the user to build a PPI network from selected public databases and add their own PPI data. In this network, the proteins have unique identifiers resulting from the standardization of the different identifiers specific to each database. In addition to the construction of the first-order network, APPINetwork offers the possibility of building a second-order network centered on the proteins of interest (proteins known for their role in the biological process studied or subunits of a complex protein) and provides the number and type of experiments that have highlighted each PPI, as well as references to articles containing experimental evidence. Conclusion: More than a tool for PPI network building, APPINetwork enables the analysis of the resultant network, by searching either for the community of proteins involved in the same biological process or for the assembly intermediates of a protein complex. Results of these analyses are provided in easily exportable files. Examples files and a user manual describing each step of the process come with the package.


Assuntos
Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Bases de Dados de Proteínas , Software , Proteínas/metabolismo
6.
BMC Bioinformatics ; 10: 98, 2009 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-19331668

RESUMO

BACKGROUND: There are many sources of variation in dual labelled microarray experiments, including data acquisition and image processing. The final interpretation of experiments strongly relies on the accuracy of the measurement of the signal intensity. For low intensity spots in particular, accurately estimating gene expression variations remains a challenge as signal measurement is, in this case, highly subject to fluctuations. RESULTS: To evaluate the fluctuations in the fluorescence intensities of spots, we used series of successive scans, at the same settings, of whole genome arrays. We measured the decrease in fluorescence and we evaluated the influence of different parameters (PMT gain, resolution and chemistry of the slide) on the signal variability, at the level of the array as a whole and by intensity interval. Moreover, we assessed the effect of averaging scans on the fluctuations. We found that the extent of photo-bleaching was low and we established that 1) the fluorescence fluctuation is linked to the resolution e.g. it depends on the number of pixels in the spot 2) the fluorescence fluctuation increases as the scanner voltage increases and, moreover, is higher for the red as opposed to the green fluorescence which can introduce bias in the analysis 3) the signal variability is linked to the intensity level, it is higher for low intensities 4) the heterogeneity of the spots and the variability of the signal and the intensity ratios decrease when two or three scans are averaged. CONCLUSION: Protocols consisting of two scans, one at low and one at high PMT gains, or multiple scans (ten scans) can introduce bias or be difficult to implement. We found that averaging two, or at most three, acquisitions of microarrays scanned at moderate photomultiplier settings (PMT gain) is sufficient to significantly improve the accuracy (quality) of the data and particularly those for spots having low intensities and we propose this as a general approach. For averaging and precise image alignment at sub-pixel levels we have made a program freely available on our web-site http://bioinfome.cgm.cnrs-gif.fr to facilitate implementation of this approach.


Assuntos
Aumento da Imagem/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Perfilação da Expressão Gênica/métodos , Internet , Software
7.
Nucleic Acids Res ; 35(10): 3214-22, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17452353

RESUMO

The origin of DNA replication (oriC) of the hyperthermophilic archaeon Pyrococcus abyssi contains multiple ORB and mini-ORB repeats that show sequence similarities to other archaeal ORB (origin recognition box). We report here that the binding of Cdc6/Orc1 to a 5 kb region containing oriC in vivo was highly specific both in exponential and stationary phases, by means of chromatin immunoprecipitation coupled with hybridization on a whole genome microarray (ChIP-chip). The oriC region is practically the sole binding site for the Cdc6/Orc1, thereby distinguishing oriC in the 1.8 M bp genome. We found that the 5 kb region contains a previously unnoticed cluster of ORB and mini-ORB repeats in the gene encoding the small subunit (dp1) for DNA polymerase II (PolD). ChIP and the gel retardation analyses further revealed that Cdc6/Orc1 specifically binds both of the ORB clusters in oriC and dp1. The organization of the ORB clusters in the dp1 and oriC is conserved during evolution in the order Thermococcales, suggesting a role in the initiation of DNA replication. Our ChIP-chip analysis also revealed that Mcm alters the binding specificity to the oriC region according to the growth phase, consistent with its role as a licensing factor.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Pyrococcus abyssi/genética , Origem de Replicação , Sítios de Ligação , Imunoprecipitação da Cromatina , Sequência Conservada , Genoma Arqueal , Análise de Sequência com Séries de Oligonucleotídeos , Sequências Repetitivas de Ácido Nucleico
8.
Biochimie ; 90(4): 640-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18086573

RESUMO

Today, the information for generating reliable protein-protein complex datasets is not directly accessible from PDB structures. Moreover, in X-ray protein structures, different types of contacts can be observed between proteins: contacts in homodimers or inside heterocomplexes considered to be specific, and contacts induced by crystallogenesis processes, considered to be non-specific. However, none of the databases giving access to protein-protein complexes allows the crystallographic interfaces to be distinguished from the biological interfaces. For this reason we developed PPIDD (Protein-Protein Interface Description Database), an innovative tool, which allows the extraction and visualisation of biological protein-protein interfaces from an annotated subset of crystallographic structures of proteins. This tool is focused on the description of protein-protein interfaces corresponding to well-identified classes of protein assemblies. It permits the representation of any of these protein-protein assemblies (duplex) and their interfaces as well as the export of the corresponding molecular structures under a flexible format, which is an extension of the PDBML. Moreover, PPIDD facilitates the construction of subsets of interfaces presenting user-specified common characteristics, to enhance the understanding of the determinants of specific protein-protein interactions.


Assuntos
Bases de Dados de Proteínas , Armazenamento e Recuperação da Informação/métodos , Conformação Proteica , Proteínas/química , Interface Usuário-Computador , Cristalografia por Raios X , Internet , Modelos Moleculares , Mapeamento de Interação de Proteínas , Análise de Sequência de Proteína
9.
Bioinformatics ; 23(17): 2339-41, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17586547

RESUMO

UNLABELLED: MAnGO (Microarray Analysis at the Gif/Orsay platform) is an interactive R-based tool for the analysis of two-colour microarray experiments. It is a compilation of various methods, which allows the user (1) to control data quality by detecting biases with a large number of visual representations, (2) to pre-process data (filtering and normalization) and (3) to carry out differential analyses. MAnGO is not only a 'turn-key' tool, oriented towards biologists but also a flexible and adaptable R script oriented towards bioinformaticians. AVAILABILITY: http://bioinfome.cgm.cnrs-gif.fr/.


Assuntos
Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Interface Usuário-Computador , Algoritmos , Hibridização in Situ Fluorescente/métodos , Linguagens de Programação
10.
Exp Hematol ; 64: 12-32, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29807062

RESUMO

The ß-hemoglobinopathies, transfusion-dependent ß-thalassemia and sickle cell disease, are the most prevalent inherited disorders worldwide and affect millions of people. Many of these patients have a shortened life expectancy and suffer from severe morbidity despite supportive therapies, which impose an enormous financial burden to societies. The only available curative therapy is allogeneic hematopoietic stem cell transplantation, although most patients do not have an HLA-matched sibling donor, and those who do still risk life-threatening complications. Therefore, gene therapy by one-time ex vivo modification of hematopoietic stem cells followed by autologous engraftment is an attractive new therapeutic modality. The first proof-of-principle of conversion to transfusion independence by means of a lentiviral vector expressing a marked and anti-sickling ßT87Q-globin gene variant was reported a decade ago in a patient with transfusion-dependent ß-thalassemia. In follow-up multicenter Phase II trials with an essentially identical vector (termed LentiGlobin BB305) and protocol, 12 of the 13 patients with a non-ß0/ß0 genotype, representing more than half of all transfusion-dependent ß-thalassemia cases worldwide, stopped red blood cell transfusions with total hemoglobin levels in blood approaching normal values. Correction of biological markers of dyserythropoiesis was achieved in evaluated patients. In nine patients with ß0/ß0 transfusion-dependent ß-thalassemia or equivalent severity (ßIVS1-110), median annualized transfusion volume decreased by 73% and red blood cell transfusions were stopped in three patients. Proof-of-principle of therapeutic efficacy in the first patient with sickle cell disease was also reported with LentiGlobin BB305. Encouraging results were presented in children with transfusion-dependent ß-thalassemia in another trial with the GLOBE lentiviral vector and several other gene therapy trials are currently open for both transfusion-dependent ß-thalassemia and sickle cell disease. Phase III trials are now under way and should help to determine benefit/risk/cost ratios to move gene therapy toward clinical practice.


Assuntos
Vetores Genéticos/uso terapêutico , Hemoglobinopatias/terapia , Lentivirus/genética , Anemia Falciforme/terapia , Transfusão de Sangue , Ensaios Clínicos como Assunto , Países em Desenvolvimento , Edição de Genes , Vetores Genéticos/genética , Carga Global da Doença , Transplante de Células-Tronco Hematopoéticas , Hemoglobinopatias/epidemiologia , Hemoglobinopatias/genética , Humanos , Sobrecarga de Ferro/etiologia , Sobrecarga de Ferro/prevenção & controle , Mutagênese Sítio-Dirigida , Prevalência , Proteínas Recombinantes/genética , Condicionamento Pré-Transplante/métodos , Globinas beta/genética , Talassemia beta/terapia
11.
BMC Syst Biol ; 11(1): 67, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28693620

RESUMO

BACKGROUND: Large sets of protein-protein interaction data coming either from biological experiments or predictive methods are available and can be combined to construct networks from which information about various cell processes can be extracted. We have developed an in silico approach based on these information to model the biogenesis of multiprotein complexes in the yeast Saccharomyces cerevisiae. RESULTS: Firstly, we have built three protein interaction networks by collecting the protein-protein interactions, which involved the subunits of three complexes, from different databases. The protein-protein interactions come from different kinds of biological experiments or are predicted. We have chosen the elongator and the mediator head complexes that are soluble and exhibit an architecture with subcomplexes that could be functional modules, and the mitochondrial bc 1 complex, which is an integral membrane complex and for which a late assembly subcomplex has been described. Secondly, by applying a clustering strategy to these networks, we were able to identify subcomplexes involved in the biogenesis of the complexes as well as the proteins interacting with each subcomplex. Thirdly, in order to validate our in silico results for the cytochrome bc1 complex we have analysed the physical interactions existing between three subunits by performing immunoprecipitation experiments in several genetic context. CONCLUSIONS: For the two soluble complexes (the elongator and mediator head), our model shows a strong clustering of subunits that belong to a known subcomplex or module. For the membrane bc 1 complex, our approach has suggested new interactions between subunits in the early steps of the assembly pathway that were experimentally confirmed. Scripts can be downloaded from the site: http://bim.igmors.u-psud.fr/isips .


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/química
12.
BMC Syst Biol ; 5: 173, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22027258

RESUMO

BACKGROUND: The mitochondrial inner membrane contains five large complexes that are essential for oxidative phosphorylation. Although the structure and the catalytic mechanisms of the respiratory complexes have been progressively established, their biogenesis is far from being fully understood. Very few complex III assembly factors have been identified so far. It is probable that more factors are needed for the assembly of a functional complex, but that the genetic approaches used to date have not been able to identify them. We have developed a systems biology approach to identify new factors controlling complex III biogenesis. RESULTS: We collected all the physical protein-protein interactions (PPI) involving the core subunits, the supernumerary subunits and the assembly factors of complex III and used Cytoscape 2.6.3 and its plugins to construct a network. It was then divided into overlapping and highly interconnected sub-graphs with clusterONE. One sub-graph contained the core and the supernumerary subunits of complex III, it also contained some subunits of complex IV and proteins participating in the assembly of complex IV. This sub-graph was then split with another algorithm into two sub-graphs. The subtraction of these two sub-graphs from the previous sub-graph allowed us to identify a protein of unknown function Usb1p/Ylr132p that interacts with the complex III subunits Qcr2p and Cor1p. We then used genetic and cell biology approaches to investigate the function of Usb1p. Preliminary results indicated that Usb1p is an essential protein with a dual localization in the nucleus and in the mitochondria, and that the over-expression of this protein can compensate for defects in the biogenesis of the respiratory complexes. CONCLUSIONS: Our systems biology approach has highlighted the multiple associations between subunits and assembly factors of complexes III and IV during their biogenesis. In addition, this approach has allowed the identification of a new factor, Usb1p, involved in the biogenesis of respiratory complexes, which could not have been found using classical genetic screens looking for respiratory deficient mutants. Thus, this systems biology approach appears to be a fruitful new way to study the biogenesis of mitochondrial multi-subunit complexes.


Assuntos
Proteínas Mitocondriais/metabolismo , Mapas de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Biologia Computacional , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Fosforilação Oxidativa , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Biologia de Sistemas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA