Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(29): 16938-16948, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32616570

RESUMO

Despite nearly four decades of effort, broad inhibition of oncogenic RAS using small-molecule approaches has proven to be a major challenge. Here we describe the development of a pan-RAS biologic inhibitor composed of the RAS-RAP1-specific endopeptidase fused to the protein delivery machinery of diphtheria toxin. We show that this engineered chimeric toxin irreversibly cleaves and inactivates intracellular RAS at low picomolar concentrations terminating downstream signaling in receptor-bearing cells. Furthermore, we demonstrate in vivo target engagement and reduction of tumor burden in three mouse xenograft models driven by either wild-type or mutant RAS Intracellular delivery of a potent anti-RAS biologic through a receptor-mediated mechanism represents a promising approach to developing RAS therapeutics against a broad array of cancers.


Assuntos
Toxina Diftérica/metabolismo , Endopeptidases/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Proteólise , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Animais , Antineoplásicos/uso terapêutico , Células Cultivadas , Toxina Diftérica/química , Toxina Diftérica/genética , Endopeptidases/química , Endopeptidases/genética , Feminino , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Nus , Mutação , Sinais Direcionadores de Proteínas , Proteínas Recombinantes/uso terapêutico , Proteínas ras/genética
2.
Proc Natl Acad Sci U S A ; 116(47): 23534-23541, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31591207

RESUMO

Mitochondrial superoxide dismutase (SOD2) suppresses tumor initiation but promotes invasion and dissemination of tumor cells at later stages of the disease. The mechanism of this functional switch remains poorly defined. Our results indicate that as SOD2 expression increases acetylation of lysine 68 ensues. Acetylated SOD2 promotes hypoxic signaling via increased mitochondrial reactive oxygen species (mtROS). mtROS, in turn, stabilize hypoxia-induced factor 2α (HIF2α), a transcription factor upstream of "stemness" genes such as Oct4, Sox2, and Nanog. In this sense, our findings indicate that SOD2K68Ac and mtROS are linked to stemness reprogramming in breast cancer cells via HIF2α signaling. Based on these findings we propose that, as tumors evolve, the accumulation of SOD2K68Ac turns on a mitochondrial pathway to stemness that depends on HIF2α and may be relevant for the progression of breast cancer toward poor outcomes.


Assuntos
Neoplasias da Mama/patologia , Autorrenovação Celular/fisiologia , Proteínas de Neoplasias/fisiologia , Células-Tronco Neoplásicas/fisiologia , Superóxido Dismutase/fisiologia , Acetilação , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Neoplasias da Mama/metabolismo , Reprogramação Celular , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Peróxido de Hidrogênio/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/enzimologia , Invasividade Neoplásica , Proteínas de Neoplasias/química , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Superóxido Dismutase/química
3.
Genes Dev ; 28(11): 1191-203, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24840202

RESUMO

Tumor metastasis remains the major cause of cancer-related death, but its molecular basis is still not well understood. Here we uncovered a splicing-mediated pathway that is essential for breast cancer metastasis. We show that the RNA-binding protein heterogeneous nuclear ribonucleoprotein M (hnRNPM) promotes breast cancer metastasis by activating the switch of alternative splicing that occurs during epithelial-mesenchymal transition (EMT). Genome-wide deep sequencing analysis suggests that hnRNPM potentiates TGFß signaling and identifies CD44 as a key downstream target of hnRNPM. hnRNPM ablation prevents TGFß-induced EMT and inhibits breast cancer metastasis in mice, whereas enforced expression of the specific CD44 standard (CD44s) splice isoform overrides the loss of hnRNPM and permits EMT and metastasis. Mechanistically, we demonstrate that the ubiquitously expressed hnRNPM acts in a mesenchymal-specific manner to precisely control CD44 splice isoform switching during EMT. This restricted cell-type activity of hnRNPM is achieved by competition with ESRP1, an epithelial splicing regulator that binds to the same cis-regulatory RNA elements as hnRNPM and is repressed during EMT. Importantly, hnRNPM is associated with aggressive breast cancer and correlates with increased CD44s in patient specimens. These findings demonstrate a novel molecular mechanism through which tumor metastasis is endowed by the hnRNPM-mediated splicing program.


Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/metabolismo , Metástase Neoplásica/fisiopatologia , Animais , Neoplasias da Mama/secundário , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/genética , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Camundongos , Metástase Neoplásica/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
4.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202229

RESUMO

Alveolar epithelial cell (AEC) mitochondrial (mt) DNA damage and fibrotic monocyte-derived alveolar macrophages (Mo-AMs) are implicated in the pathobiology of pulmonary fibrosis. We showed that sirtuin 3 (SIRT3), a mitochondrial protein regulating cell fate and aging, is deficient in the AECs of idiopathic pulmonary fibrosis (IPF) patients and that asbestos- and bleomycin-induced lung fibrosis is augmented in Sirt3 knockout (Sirt3-/-) mice associated with AEC mtDNA damage and intrinsic apoptosis. We determined whether whole body transgenic SIRT3 overexpression (Sirt3Tg) protects mice from asbestos-induced pulmonary fibrosis by mitigating lung mtDNA damage and Mo-AM recruitment. Crocidolite asbestos (100 µg/50 µL) or control was instilled intratracheally in C57Bl6 (Wild-Type) mice or Sirt3Tg mice, and at 21 d lung fibrosis (histology, fibrosis score, Sircol assay) and lung Mo-AMs (flow cytometry) were assessed. Compared to controls, Sirt3Tg mice were protected from asbestos-induced pulmonary fibrosis and had diminished lung mtDNA damage and Mo-AM recruitment. Further, pharmacologic SIRT3 inducers (i.e., resveratrol, viniferin, and honokiol) each diminish oxidant-induced AEC mtDNA damage in vitro and, in the case of honokiol, protection occurs in a SIRT3-dependent manner. We reason that SIRT3 preservation of AEC mtDNA is a novel therapeutic focus for managing patients with IPF and other types of pulmonary fibrosis.


Assuntos
Amianto/efeitos adversos , Dano ao DNA , Expressão Gênica , Fibrose Pulmonar Idiopática/etiologia , Mitocôndrias/genética , Monócitos/metabolismo , Sirtuína 3/genética , Animais , Biomarcadores , DNA Mitocondrial , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Monócitos/imunologia , Monócitos/patologia , Estresse Oxidativo , Sirtuína 3/metabolismo
5.
J Biol Chem ; 294(3): 827-837, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30487288

RESUMO

Type I interferons (IFNs) induce expression of multiple genes that control innate immune responses to invoke both antiviral and antineoplastic activities. Transcription of these interferon-stimulated genes (ISGs) occurs upon activation of the canonical Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathways. Phosphorylation and acetylation are both events crucial to tightly regulate expression of ISGs. Here, using mouse embryonic fibroblasts and an array of biochemical methods including immunoblotting and kinase assays, we show that sirtuin 2 (SIRT2), a member of the NAD-dependent protein deacetylase family, is involved in type I IFN signaling. We found that SIRT2 deacetylates cyclin-dependent kinase 9 (CDK9) in a type I IFN-dependent manner and that the CDK9 deacetylation is essential for STAT1 phosphorylation at Ser-727. We also found that SIRT2 is subsequently required for the transcription of ISGs and for IFN-driven antiproliferative responses in both normal and malignant cells. These findings establish the existence of a previously unreported signaling pathway whose function is essential for the control of JAK-STAT signaling and the regulation of IFN responses. Our findings suggest that targeting sirtuin activities may offer an avenue in the development of therapies for managing immune-related diseases and cancer.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Interferon Tipo I/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Sirtuína 2/metabolismo , Acetilação , Animais , Quinase 9 Dependente de Ciclina/genética , Humanos , Interferon Tipo I/genética , Camundongos , Camundongos Knockout , Fosforilação , Fator de Transcrição STAT1/genética , Sirtuína 2/genética , Transcrição Gênica , Células U937
6.
Hum Mol Genet ; 26(10): 1915-1926, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28369333

RESUMO

Age-dependent elevation in mitochondrial oxidative stress is widely posited to be a major factor underlying the loss of substantia nigra pars compacta (SNc) dopaminergic neurons in Parkinson's disease (PD). However, mechanistic links between aging and oxidative stress are not well understood. Sirtuin-3 (Sirt3) is a mitochondrial deacetylase that could mediate this connection. Indeed, genetic deletion of Sirt3 increased oxidative stress and decreased the membrane potential of mitochondria in SNc dopaminergic neurons. This change was attributable to increased acetylation and decreased activity of manganese superoxide dismutase (MnSOD). Site directed mutagenesis of lysine 68 to glutamine (K68Q), mimicking acetylation, decreased MnSOD activity in SNc dopaminergic neurons, whereas mutagenesis of lysine 68 to arginine (K68R), mimicking deacetylation, increased activity. Introduction of K68R MnSOD rescued mitochondrial redox status and membrane potential of SNc dopaminergic neurons from Sirt3 knockouts. Moreover, deletion of DJ-1, which helps orchestrate nuclear oxidant defenses and Sirt3 in mice led to a clear age-related loss of SNc dopaminergic neurons. Lastly, K68 acetylation of MnSOD was significantly increased in the SNc of PD patients. Taken together, our studies suggest that an age-related decline in Sirt3 protective function is a major factor underlying increasing mitochondrial oxidative stress and loss of SNc dopaminergic neurons in PD.


Assuntos
Sirtuína 3/metabolismo , Superóxido Dismutase/genética , Acetilação , Fatores Etários , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Mutagênese Sítio-Dirigida , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Doença de Parkinson/genética , Sirtuína 3/genética , Substância Negra/metabolismo , Superóxido Dismutase/metabolismo
7.
J Biol Chem ; 292(29): 12153-12164, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28584055

RESUMO

Twenty-four hours of fasting is known to blunt activation of the human NLRP3 inflammasome. This effect might be mediated by SIRT3 activation, controlling mitochondrial reactive oxygen species. To characterize the molecular underpinnings of this fasting effect, we comparatively analyzed the NLRP3 inflammasome response to nutrient deprivation in wild-type and SIRT3 knock-out mice. Consistent with previous findings for human NLRP3, prolonged fasting blunted the inflammasome in wild-type mice but not in SIRT3 knock-out mice. In SIRT3 knock-out bone marrow-derived macrophages, NLRP3 activation promoted excess cytosolic extrusion of mitochondrial DNA along with increased reactive oxygen species and reduced superoxide dismutase 2 (SOD2) activity. Interestingly, the negative regulatory effect of SIRT3 on NLRP3 was not due to transcriptional control or priming of canonical inflammasome components but, rather, occurred via SIRT3-mediated deacetylation of mitochondrial SOD2, leading to SOD2 activation. We also found that siRNA knockdown of SIRT3 or SOD2 increased NLRP3 supercomplex formation and activation. Moreover, overexpression of wild-type and constitutively active SOD2 similarly blunted inflammasome assembly and activation, effects that were abrogated by acetylation mimic-modified SOD2. Finally, in vivo administration of lipopolysaccharide increased liver injury and the levels of peritoneal macrophage cytokines, including IL-1ß, in SIRT3 KO mice. These results support the emerging concept that enhancing mitochondrial resilience against damage-associated molecular patterns may play a pivotal role in preventing inflammation and that the anti-inflammatory effect of fasting-mimetic diets may be mediated, in part, through SIRT3-directed blunting of NLRP3 inflammasome assembly and activation.


Assuntos
Jejum , Inflamassomos/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo , Acetilação/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem Celular , Células Cultivadas , Ativação Enzimática , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Multimerização Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/química
8.
FASEB J ; 31(6): 2520-2532, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28258190

RESUMO

Alveolar epithelial cell (AEC) mitochondrial dysfunction and apoptosis are important in idiopathic pulmonary fibrosis and asbestosis. Sirtuin 3 (SIRT3) detoxifies mitochondrial reactive oxygen species, in part, by deacetylating manganese superoxide dismutase (MnSOD) and mitochondrial 8-oxoguanine DNA glycosylase. We reasoned that SIRT3 deficiency occurs in fibrotic lungs and thereby augments AEC mtDNA damage and apoptosis. Human lungs were assessed by using immunohistochemistry for SIRT3 activity via acetylated MnSODK68 Murine AEC SIRT3 and cleaved caspase-9 (CC-9) expression were assayed by immunoblotting with or without SIRT3 enforced expression or silencing. mtDNA damage was measured by using quantitative PCR and apoptosis via ELISA. Pulmonary fibrosis after asbestos or bleomycin exposure was evaluated in 129SJ/wild-type and SIRT3-knockout mice (Sirt3-/- ) by using fibrosis scoring and lung collagen levels. Idiopathic pulmonary fibrosis lung alveolar type II cells have increased MnSODK68 acetylation compared with controls. Asbestos and H2O2 diminished AEC SIRT3 protein expression and increased mitochondrial protein acetylation, including MnSODK68 SIRT3 enforced expression reduced oxidant-induced AEC OGG1K338/341 acetylation, mtDNA damage, and apoptosis, whereas SIRT3 silencing promoted these effects. Asbestos- or bleomycin-induced lung fibrosis, AEC mtDNA damage, and apoptosis in wild-type mice were amplified in Sirt3-/- animals. These data suggest a novel role for SIRT3 deficiency in mediating AEC mtDNA damage, apoptosis, and lung fibrosis.-Jablonski, R. P., Kim, S.-J., Cheresh, P., Williams, D. B., Morales-Nebreda, L., Cheng, Y., Yeldandi, A., Bhorade, S., Pardo, A., Selman, M., Ridge, K., Gius, D., Budinger, G. R. S., Kamp, D. W. SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis.


Assuntos
Células Epiteliais Alveolares/patologia , Apoptose/fisiologia , DNA Mitocondrial/fisiologia , Fibrose Pulmonar/etiologia , Sirtuína 3/metabolismo , Células A549 , Animais , Antibióticos Antineoplásicos/toxicidade , Amianto/toxicidade , Bleomicina/toxicidade , Dano ao DNA , Humanos , Camundongos , Camundongos Knockout , Oxidantes/toxicidade , Fibrose Pulmonar/metabolismo , Sirtuína 3/genética
9.
Mol Pharm ; 15(9): 3625-3633, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29771531

RESUMO

Exosomes play a pivotal role in mediating intercellular communications and package delivery. They have recently been discovered to serve as diagnostic biomarkers as well as a possible drug delivery vehicle based on their nanometer size range and capability to transfer biological materials to recipient cells. Their unique biocompatibility, high stability, preferred tumor homing, and adjustable targeting efficiency can make exosomes an attractive and potentially effective tool of drug delivery in cancer therapy. While exosomes possess properties that make them uniquely suitable for delivery of bioactive molecules, there remains a to-be-filled gap between the current understanding about exosome biology and the ideal application scenarios. In this review, we summarize the characteristics enabling the potential of exosomes for drug delivery as well as the outstanding questions related to exosome composition and function, production and purification, bioengineering and targeting, uptake and biodistribution, efficacy and immune regulation, etc. Advanced technologies are demanded to visualize, characterize, and sort heterogeneous exosome populations. We are positive that the deeper and more comprehensive understanding of exosome biology as well as advanced nanotechnology will certainly accelerate its therapeutic applications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Exossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Bioengenharia/métodos , Comunicação Celular/fisiologia , Humanos , Neoplasias/patologia
10.
Mol Cell ; 40(6): 893-904, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21172655

RESUMO

Genetic deletion of the mitochondrial deacetylase sirtuin-3 (Sirt3) results in increased mitochondrial superoxide, a tumor-permissive environment, and mammary tumor development. MnSOD contains a nutrient- and ionizing radiation (IR)-dependent reversible acetyl-lysine that is hyperacetylated in Sirt3⁻/⁻ livers at 3 months of age. Livers of Sirt3⁻/⁻ mice exhibit decreased MnSOD activity, but not immunoreactive protein, relative to wild-type livers. Reintroduction of wild-type but not deacetylation null Sirt3 into Sirt3⁻/⁻ MEFs deacetylated lysine and restored MnSOD activity. Site-directed mutagenesis of MnSOD lysine 122 to an arginine, mimicking deacetylation (lenti-MnSOD(K122-R)), increased MnSOD activity when expressed in MnSOD⁻/⁻ MEFs, suggesting acetylation directly regulates function. Furthermore, infection of Sirt3⁻/⁻ MEFs with lenti-MnSOD(K122-R) inhibited in vitro immortalization by an oncogene (Ras), inhibited IR-induced genomic instability, and decreased mitochondrial superoxide. Finally, IR was unable to induce MnSOD deacetylation or activity in Sirt3⁻/⁻ livers, and these irradiated livers displayed significant IR-induced cell damage and microvacuolization in their hepatocytes.


Assuntos
Sequência Conservada , Evolução Molecular , Lisina/metabolismo , Estresse Oxidativo , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo , Acetilação , Animais , Arginina/metabolismo , Linhagem Celular , Camundongos , Mutagênese Sítio-Dirigida , Sirtuína 3/deficiência , Sirtuína 3/genética
11.
J Bioenerg Biomembr ; 49(4): 325-333, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28616679

RESUMO

It is becoming increasingly clear that mitochondria drive cellular functions and in vivo phenotypes by directing the production rate and abundance of metabolites that are proposed to function as signaling molecules (Chandel 2015; Selak et al. 2005; Etchegaray and Mostoslavsky 2016). Many of these metabolites are intermediates that make up cellular metabolism, part of which occur in mitochondria (i.e. the TCA and urea cycles), while others are produced "on demand" mainly in response to alterations in the microenvironment in order to participate in the activation of acute adaptive responses (Mills et al. 2016; Go et al. 2010). Reactive oxygen species (ROS) are well suited for the purpose of executing rapid and transient signaling due to their short lived nature (Bae et al. 2011). Hydrogen peroxide (H2O2), in particular, possesses important characteristics including diffusibility and faster reactivity with specific residues such as methionine, cysteine and selenocysteine (Bonini et al. 2014). Therefore, it is reasonable to propose that H2O2 functions as a relatively specific redox signaling molecule. Even though it is now established that mtH2O2 is indispensable, at least for hypoxic adaptation and energetic and/or metabolic homeostasis (Hamanaka et al. 2016; Guzy et al. 2005), the question of how H2O2 is produced and regulated in the mitochondria is only partially answered. In this review, some roles of this indispensable signaling molecule in driving cellular metabolism will be discussed. In addition, we will discuss how H2O2 formation in mitochondria depends on and is controlled by MnSOD. Finally, we will conclude this manuscript by highlighting why a better understanding of redox hubs in the mitochondria will likely lead to new and improved therapeutics of a number of diseases, including cancer.


Assuntos
Mitocôndrias/metabolismo , Transdução de Sinais , Superóxido Dismutase/fisiologia , Animais , Humanos , Peróxido de Hidrogênio/metabolismo , Oxirredução
12.
J Am Soc Nephrol ; 27(5): 1362-78, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26424786

RESUMO

Obesity and diabetes mellitus are the leading causes of renal disease. In this study, we determined the regulation and role of the G protein-coupled bile acid receptor TGR5, previously shown to be regulated by high glucose and/or fatty acids, in obesity-related glomerulopathy (ORG) and diabetic nephropathy (DN). Treatment of diabetic db/db mice with the selective TGR5 agonist INT-777 decreased proteinuria, podocyte injury, mesangial expansion, fibrosis, and CD68 macrophage infiltration in the kidney. INT-777 also induced renal expression of master regulators of mitochondrial biogenesis, inhibitors of oxidative stress, and inducers of fatty acid ß-oxidation, including sirtuin 1 (SIRT1), sirtuin 3 (SIRT3), and Nrf-1. Increased activity of SIRT3 was evidenced by normalization of the increased acetylation of mitochondrial superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2) observed in untreated db/db mice. Accordingly, INT-777 decreased mitochondrial H2O2 generation and increased the activity of SOD2, which associated with decreased urinary levels of H2O2 and thiobarbituric acid reactive substances. Furthermore, INT-777 decreased renal lipid accumulation. INT-777 also prevented kidney disease in mice with diet-induced obesity. In human podocytes cultured with high glucose, INT-777 induced mitochondrial biogenesis, decreased oxidative stress, and increased fatty acid ß-oxidation. Compared with normal kidney biopsy specimens, kidney specimens from patients with established ORG or DN expressed significantly less TGR5 mRNA, and levels inversely correlated with disease progression. Our results indicate that TGR5 activation induces mitochondrial biogenesis and prevents renal oxidative stress and lipid accumulation, establishing a role for TGR5 in inhibiting kidney disease in obesity and diabetes.


Assuntos
Ácidos Cólicos/farmacologia , Ácidos Cólicos/uso terapêutico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/prevenção & controle , Nefropatias/etiologia , Nefropatias/prevenção & controle , Obesidade/complicações , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/fisiologia , Animais , Ácidos e Sais Biliares , Humanos , Peróxido de Hidrogênio , Masculino , Camundongos , Estresse Oxidativo , Podócitos , Transdução de Sinais , Superóxido Dismutase
13.
Proc Natl Acad Sci U S A ; 110(33): 13546-51, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23898190

RESUMO

Sirtuin 2 (SIRT2) is a sirtuin family deacetylase that directs acetylome signaling, protects genome integrity, and is a murine tumor suppressor. We show that SIRT2 directs replication stress responses by regulating the activity of cyclin-dependent kinase 9 (CDK9), a protein required for recovery from replication arrest. SIRT2 deficiency results in replication stress sensitivity, impairment in recovery from replication arrest, spontaneous accumulation of replication protein A to foci and chromatin, and a G2/M checkpoint deficit. SIRT2 interacts with and deacetylates CDK9 at lysine 48 in response to replication stress in a manner that is partially dependent on ataxia telangiectasia and Rad3 related (ATR) but not cyclin T or K, thereby stimulating CDK9 kinase activity and promoting recovery from replication arrest. Moreover, wild-type, but not acetylated CDK9, alleviates the replication stress response impairment of SIRT2 deficiency. Collectively, our results define a function for SIRT2 in regulating checkpoint pathways that respond to replication stress through deacetylation of CDK9, providing insight into how SIRT2 maintains genome integrity and a unique mechanism by which SIRT2 may function, at least in part, as a tumor suppressor protein.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Quinase 9 Dependente de Ciclina/metabolismo , Replicação do DNA/fisiologia , Sirtuína 2/metabolismo , Acetilação , Animais , Western Blotting , Linhagem Celular , Cromatografia Líquida , Ensaio de Unidades Formadoras de Colônias , Imunofluorescência , Humanos , Camundongos , Proteína de Replicação A/metabolismo , Espectrometria de Massas em Tandem
14.
Infect Immun ; 83(11): 4392-403, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26351282

RESUMO

The multifunctional-autoprocessing repeats-in-toxin (MARTXVv) toxin of Vibrio vulnificus plays a significant role in the pathogenesis of this bacterium through delivery of up to five effector domains to the host cells. Previous studies have established that the MARTXVv toxin is linked to V. vulnificus dependent induction of apoptosis, but the region of the large multifunction protein essential for this activity was not previously identified. Recently, we showed that the Makes Caterpillar Floppy-like MARTX effector domain (MCFVv) is an autoproteolytic cysteine protease that induces rounding of various cell types. In this study, we demonstrate that cell rounding induced by MCFVv is coupled to reduced metabolic rate and inhibition of cellular proliferation. Moreover, delivery of MCFVv into host cells either as a fusion to the N-terminal fragment of anthrax toxin lethal factor or when naturally delivered as a V. vulnificus MARTX toxin led to loss of mitochondrial membrane potential, release of cytochrome c, activation of Bax and Bak, and processing of caspases and poly-(ADP-ribose) polymerase (PARP-γ). These studies specifically link the MCFVv effector domain to induction of the intrinsic apoptosis pathway by V. vulnificus.


Assuntos
Apoptose , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Mitocôndrias/metabolismo , Vibrioses/fisiopatologia , Vibrio vulnificus/metabolismo , Toxinas Bacterianas/genética , Caspases/metabolismo , Citocromos c/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/enzimologia , Estrutura Terciária de Proteína , Vibrioses/metabolismo , Vibrioses/microbiologia , Vibrio vulnificus/química , Vibrio vulnificus/genética
15.
Nature ; 451(7175): 202-6, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-18185590

RESUMO

Tumour suppressor genes (TSGs) inhibiting normal cellular growth are frequently silenced epigenetically in cancer. DNA methylation is commonly associated with TSG silencing, yet mutations in the DNA methylation initiation and recognition machinery in carcinogenesis are unknown. An intriguing possible mechanism for gene regulation involves widespread non-coding RNAs such as microRNA, Piwi-interacting RNA and antisense RNAs. Widespread sense-antisense transcripts have been systematically identified in mammalian cells, and global transcriptome analysis shows that up to 70% of transcripts have antisense partners and that perturbation of antisense RNA can alter the expression of the sense gene. For example, it has been shown that an antisense transcript not naturally occurring but induced by genetic mutation leads to gene silencing and DNA methylation, causing thalassaemia in a patient. Here we show that many TSGs have nearby antisense RNAs, and we focus on the role of one RNA in silencing p15, a cyclin-dependent kinase inhibitor implicated in leukaemia. We found an inverse relation between p15 antisense (p15AS) and p15 sense expression in leukaemia. A p15AS expression construct induced p15 silencing in cis and in trans through heterochromatin formation but not DNA methylation; the silencing persisted after p15AS was turned off, although methylation and heterochromatin inhibitors reversed this process. The p15AS-induced silencing was Dicer-independent. Expression of exogenous p15AS in mouse embryonic stem cells caused p15 silencing and increased growth, through heterochromatin formation, as well as DNA methylation after differentiation of the embryonic stem cells. Thus, natural antisense RNA may be a trigger for heterochromatin formation and DNA methylation in TSG silencing in tumorigenesis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p15/genética , Epigênese Genética , Genes Supressores de Tumor , RNA Antissenso/genética , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p15/biossíntese , Metilação de DNA , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Leucemia/genética , Camundongos , Modelos Genéticos , Regiões Promotoras Genéticas/genética , RNA Antissenso/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
16.
Biochem J ; 454(2): 249-57, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23767918

RESUMO

Sirt3 (sirtuin 3) is an NAD-dependent deacetylase localized to mitochondria. Sirt3 expression is increased in mouse muscle and liver by starvation, which could protect against the starvation-dependent increase in oxidative stress and protein damage. Damaged proteins and organelles depend on autophagy for removal and this is critical for cell survival, but the role of Sirt3 is unclear. To examine this, we used Sirt3-KO (knockout) mouse embryonic fibroblast cells, and found that, under basal conditions, Sirt3-KO cells exhibited increased autophagy flux compared with WT (wild-type) cells. In response to nutrient deprivation, both WT and KO cells exhibited increased basal and ATP-linked mitochondrial respiration, indicating an increased energy demand. Both cells exhibited lower levels of phosphorylated mTOR (mammalian target of rapamycin) and higher autophagy flux, with KO cells exhibiting lower maximal mitochondrial respiration and reserve capacity, and higher levels of autophagy than WT cells. KO cells exhibit higher phospho-JNK (c-Jun N-terminal kinase) and phospho-c-Jun than WT cells under starvation conditions. However, inhibition of JNK activity in Sirt3-KO cells did not affect LC3-I (light chain 3-I) and LC3-II levels, indicating that Sirt3-regulated autophagy is independent of the JNK pathway. Caspase 3 activation and cell death are significantly higher in Sirt3-KO cells compared with WT cells in response to nutrient deprivation. Inhibition of autophagy by chloroquine exacerbated cell death in both WT and Sirt3-KO cells, and by 3-methyadenine exacerbated cell death in Sirt3-KO cells. These data suggest that nutrient deprivation-induced autophagy plays a protective role in cell survival, and Sirt3 decreases the requirement for enhanced autophagy and improves cellular bioenergetics.


Assuntos
Autofagia , Metabolismo Energético , Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases , Fosforilação Oxidativa , Sirtuína 3/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Caspase 3/metabolismo , Células Cultivadas , Meios de Cultura/metabolismo , Embrião de Mamíferos/citologia , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Sirtuína 3/genética , Serina-Treonina Quinases TOR/metabolismo , Moduladores de Tubulina/farmacologia
17.
Sci Adv ; 10(20): eadj5942, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758779

RESUMO

Acetyl-CoA synthetase short-chain family member 1 (ACSS1) uses acetate to generate mitochondrial acetyl-CoA and is regulated by deacetylation by sirtuin 3. We generated an ACSS1-acetylation (Ac) mimic mouse, where lysine-635 was mutated to glutamine (K635Q). Male Acss1K635Q/K635Q mice were smaller with higher metabolic rate and blood acetate and decreased liver/serum ATP and lactate levels. After a 48-hour fast, Acss1K635Q/K635Q mice presented hypothermia and liver aberrations, including enlargement, discoloration, lipid droplet accumulation, and microsteatosis, consistent with nonalcoholic fatty liver disease (NAFLD). RNA sequencing analysis suggested dysregulation of fatty acid metabolism, cellular senescence, and hepatic steatosis networks, consistent with NAFLD. Fasted Acss1K635Q/K635Q mouse livers showed increased fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1), both associated with NAFLD, and increased carbohydrate response element-binding protein binding to Fasn and Scd1 enhancer regions. Last, liver lipidomics showed elevated ceramide, lysophosphatidylethanolamine, and lysophosphatidylcholine, all associated with NAFLD. Thus, we propose that ACSS1-K635-Ac dysregulation leads to aberrant lipid metabolism, cellular senescence, and NAFLD.


Assuntos
Senescência Celular , Mitocôndrias , Hepatopatia Gordurosa não Alcoólica , Estearoil-CoA Dessaturase , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Camundongos , Senescência Celular/genética , Acetilação , Mitocôndrias/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Masculino , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Técnicas de Introdução de Genes , Fígado/metabolismo , Fígado/patologia , Metabolismo dos Lipídeos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Modelos Animais de Doenças , Coenzima A Ligases , Ácido Graxo Sintase Tipo I
18.
Sci Adv ; 10(20): eado1463, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758782

RESUMO

A ketogenic diet (KD) is a high-fat, low-carbohydrate diet that leads to the generation of ketones. While KDs improve certain health conditions and are popular for weight loss, detrimental effects have also been reported. Here, we show mice on two different KDs and, at different ages, induce cellular senescence in multiple organs, including the heart and kidney. This effect is mediated through adenosine monophosphate-activated protein kinase (AMPK) and inactivation of mouse double minute 2 (MDM2) by caspase-2, leading to p53 accumulation and p21 induction. This was established using p53 and caspase-2 knockout mice and inhibitors to AMPK, p21, and caspase-2. In addition, senescence-associated secretory phenotype biomarkers were elevated in serum from mice on a KD and in plasma samples from patients on a KD clinical trial. Cellular senescence was eliminated by a senolytic and prevented by an intermittent KD. These results have important clinical implications, suggesting that the effects of a KD are contextual and likely require individual optimization.


Assuntos
Senescência Celular , Dieta Cetogênica , Camundongos Knockout , Proteína Supressora de Tumor p53 , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos , Humanos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Masculino , Especificidade de Órgãos
19.
Curr Opin Oncol ; 25(6): 630-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24048020

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to highlight recent studies on mammalian sirtuins that coordinately regulate cellular metabolic homeostasis upon fasting and to summarize the beneficial effects of fasting on carcinogenesis and cancer therapy. RECENT FINDINGS: Recent studies have demonstrated that fasting may protect normal cells and mice from the metabolic conditions that are harmful as well as decrease the incidence of carcinogenesis. Fasting could also slow the tumor growth and augment the efficacy of certain systemic agents/chemotherapy drugs in various cancers. The mechanism behind this proposed idea may be due to, at least in some part, the metabolic regulation by Sirtuin family proteins whose functions are involved in specific aspects of longevity, stress response and metabolism. Sirtuins, particularly SIRT1 and SIRT3, can be activated by fasting and further exhibit their effects in insulin response, antioxidant defense, and glycolysis. Therefore, sirtuins may have anticancer effects by shifting metabolism to a less proliferative cell phenotype as well as less prone to oxidative stress attack. SUMMARY: The in-depth understanding of the essential role of sirtuins in fasting process may have significant implications in developing a new metabolic diagram of cancer prevention or treatment.


Assuntos
Antioxidantes/metabolismo , Metabolismo Energético , Jejum/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Animais , Feminino , Glucose/metabolismo , Glicólise , Homeostase , Humanos , Insulina/metabolismo , Masculino , Neoplasias/prevenção & controle , Neoplasias/terapia , Receptor Cross-Talk , Sirtuínas/metabolismo
20.
Hum Genomics ; 5(5): 485-96, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21807603

RESUMO

The sirtuin family of proteins is categorised as class III histone deacetylases that play complex and important roles in ageing-related pathological conditions such as cancer and the deregulation of metabolism. There are seven members in humans, divided into four classes, and evolutionarily conserved orthologues can be found in most forms of life, including both eukaryotes and prokaryotes. The highly conserved catalytic core domain composed of a large oxidised nicotinamide adenine dinucleotide (NAD+)-binding Rossmann fold subunit suggests that these proteins belong to a family of nutrient-sensing regulators. Along with their function in regulating cellular metabolism in response to stressful conditions, they are implicated in modifying a wide variety of substrates; this increases the complexity of unravelling the interplay of sirtuins and their partners. Over the past few years, all of these new findings have attracted the interest of researchers exploring potential therapeutic implications related to the function of sirtuins. It remains to be elucidated whether, indeed, sirtuins can serve as molecular targets for the treatment of human illnesses.


Assuntos
Evolução Molecular , Sirtuínas/fisiologia , Domínio Catalítico , Humanos , Longevidade/fisiologia , NAD/química , NAD/metabolismo , Neoplasias/metabolismo , Filogenia , Sirtuínas/química , Sirtuínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA