Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2400566121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870061

RESUMO

Intrinsic and acquired resistance to mitogen-activated protein kinase inhibitors (MAPKi) in melanoma remains a major therapeutic challenge. Here, we show that the clinical development of resistance to MAPKi is associated with reduced tumor expression of the melanoma suppressor Autophagy and Beclin 1 Regulator 1 (AMBRA1) and that lower expression levels of AMBRA1 predict a poor response to MAPKi treatment. Functional analyses show that loss of AMBRA1 induces phenotype switching and orchestrates an extracellular signal-regulated kinase (ERK)-independent resistance mechanism by activating focal adhesion kinase 1 (FAK1). In both in vitro and in vivo settings, melanomas with low AMBRA1 expression exhibit intrinsic resistance to MAPKi therapy but higher sensitivity to FAK1 inhibition. Finally, we show that the rapid development of resistance in initially MAPKi-sensitive melanomas can be attributed to preexisting subclones characterized by low AMBRA1 expression and that cotreatment with MAPKi and FAK1 inhibitors (FAKi) effectively prevents the development of resistance in these tumors. In summary, our findings underscore the value of AMBRA1 expression for predicting melanoma response to MAPKi and supporting the therapeutic efficacy of FAKi to overcome MAPKi-induced resistance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Resistencia a Medicamentos Antineoplásicos , Melanoma , Inibidores de Proteínas Quinases , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Animais , Camundongos , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Feminino
2.
Mol Cancer ; 23(1): 6, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184565

RESUMO

BACKGROUND: Adoptive cell transfer cancer immunotherapy holds promise for treating disseminated disease, yet generating sufficient numbers of lymphocytes with anti-cancer activity against diverse specificities remains a major challenge. We recently developed a novel procedure (ALECSAT) for selecting, expanding and maturating polyclonal lymphocytes from peripheral blood with the capacity to target malignant cells. METHODS: Immunodeficient mice were challenged with triple-negative breast cancer cell lines or patient-derived xenografts (PDX) and treated with allogeneic or autologous ALECSAT cells with and without anti-PDL1 therapy to assess the capacity of ALECSAT cells to inhibit primary tumor growth and metastasis. RESULTS: ALECSAT mono therapy inhibited metastasis, but did not inhibit primary tumor growth or prolong survival of tumor-bearing mice. In contrast, combined ALECSAT and anti-PDL1 therapy significantly inhibited primary tumor growth, nearly completely blocked metastasis, and prolonged survival of tumor-bearing mice. CONCLUSIONS: Combined ALECSAT and anti-PDL1 therapy results in favorable anti-cancer responses in both cell line-derived xenograft and autologous PDX models of advanced triple-negative breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/terapia , Anticorpos Monoclonais Humanizados , Linfócitos , Modelos Animais de Doenças , Imunoterapia Adotiva
3.
Nucleic Acids Res ; 47(13): 6668-6684, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31114908

RESUMO

Rearrangement of the 1q12 pericentromeric heterochromatin and subsequent amplification of the 1q arm is commonly associated with cancer development and progression and may result from epigenetic deregulation. In many premalignant and malignant cells, loss of 1q12 satellite DNA methylation causes the deposition of polycomb factors and formation of large polycomb aggregates referred to as polycomb bodies. Here, we show that SSX proteins can destabilize 1q12 pericentromeric heterochromatin in melanoma cells when it is present in the context of polycomb bodies. We found that SSX proteins deplete polycomb bodies and promote the unfolding and derepression of 1q12 heterochromatin during replication. This further leads to segregation abnormalities during anaphase and generation of micronuclei. The structural rearrangement of 1q12 pericentromeric heterochromatin triggered by SSX2 is associated with loss of polycomb factors, but is not mediated by diminished polycomb repression. Instead, our studies suggest a direct effect of SSX proteins facilitated though a DNA/chromatin binding, zinc finger-like domain and a KRAB-like domain that may recruit chromatin modifiers or activate satellite transcription. Our results demonstrate a novel mechanism for generation of 1q12-associated genomic instability in cancer cells.


Assuntos
Montagem e Desmontagem da Cromatina , Cromossomos Humanos Par 1/metabolismo , Heterocromatina/metabolismo , Proteínas de Neoplasias/fisiologia , Proteínas Repressoras/fisiologia , Processamento Alternativo , Linhagem Celular Tumoral , DNA de Neoplasias/genética , DNA Satélite/genética , Repressão Epigenética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Instabilidade Genômica , Humanos , Melanoma/patologia , Proteínas de Neoplasias/genética , Mutação Puntual , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética , Domínios Proteicos , Dobramento de Proteína , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Deleção de Sequência , Transcrição Gênica , Dedos de Zinco/fisiologia
4.
J Cell Physiol ; 235(2): 920-931, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31241772

RESUMO

MicroRNAs (miRNAs) are important molecular regulatorsof cellular signaling and behavior. They alter gene expression by targeting messenger RNAs, including those encoding transcriptional regulators, such as HMGA2. While HMGA2 is oncogenic in various tumors, miRNAs may be oncogenic or tumor suppressive. Here, we investigate the expression of HMGA2 and the miRNA miR-330 in a patient with colorectal cancer (CRC) samples and their effects on oncogenic cellular phenotypes. We found that HMGA2 expression is increased and miR-330 expression is decreased in CRCs and each predicts poor long-term patient survival. Stably increased miR-330 expression in human colorectal cancer cells (HCT116) and SW480 CRC cell lines downregulate the oncogenic expression of HMGA2, a predicted miR-330 target. Additionally, this promotes apoptosis and decreases cell migration and viability. Consistently, it also decreases protein-level expression of markers for epithelial-to-mesenchymal-transition (Snail-1, E-cadherin, and Vascular endothelial growth factor receptors) and transforming growth factor ß signaling (SMAD3), as well as phospho- Protein kinase B (AKT) and phospho-STAT3 levels. We conclude that miR-330 acts as a tumor suppressor miRNA in CRC by suppressing HMGA2 expression and reducing cell survival, proliferation, and migration. Thus, we identify miR-330 as a promising candidate for miRNA replacement therapy for patients with CRC.


Assuntos
Apoptose/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Proteína HMGA2/metabolismo , MicroRNAs/genética , Antígenos CD/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor , Células HCT116 , Proteína HMGA2/genética , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Proteína Smad3/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Cancer Immunol Immunother ; 69(11): 2169-2178, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32648166

RESUMO

T-cell receptor (TCR)- and chimeric antigen receptor (CAR)-based adoptive cell transfer (ACT) has shown promising results in hematological malignancies, but remains immature in solid cancers. The challenges associated with identification of tumor-specific targets, the heterogenic antigen expression, limited T-cell trafficking to tumor sites and the hostile tumor microenvironment (TME), are all factors contributing to the limited efficacy of ACT therapies against solid tumors. Epigenetic priming of tumor cells and the microenvironment may be a way of overcoming these obstacles and improving the clinical efficacy of adoptive T-cell therapies in the future. Here, we review the current literature and suggest combining epigenetic modulators and ACT strategies as a way of augmenting the efficacy of TCR- and CAR-engineered T cells against solid tumors.


Assuntos
Terapia Combinada/métodos , Epigênese Genética , Imunoterapia Adotiva/métodos , Neoplasias , Linfócitos T/transplante , Animais , Antígenos de Neoplasias/imunologia , Metilases de Modificação do DNA/antagonistas & inibidores , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Evasão Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
6.
J Cell Physiol ; 234(6): 9816-9825, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30480817

RESUMO

BACKGROUND: Breast cancer is the most common type of cancer among women, and despite improved treatments, it remains a major challenge. However, improved mechanistic insight may lead to novel therapeutic strategies. miR-142-3p belongs to the miR-142 family and is involved in pathogenesis and metastasis of various types of malignancies by targeting several important messenger RNAs (mRNAs) including Bach-1. This is especially true for breast cancer, where Bach-1 is involved in the metastatic spread by deregulation of metastasis-associated genes. METHODS: In this study, we collected 24 breast cancer tissues with 24 adjusted normal tissues to measure the expression levels of miR-142-3p and Bach-1 mRNA using quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and IHC. miR-142-3p targeting of Bach-1 expression in MCF-7 and MDA-MB-468 breast cancer cells was evaluated using bioinformatics, qRT-PCR and western blot analyses. The cellular proliferation, invasion, and migration were assessed by MTT, transwell matrigel and wound healing assay and the EMT-associated proteins C-X-C chemokine receptor type 4 (CXCR-4), matrix metalloproteinase-9 (MMP9), and vascular endothelial growth factor receptor (VEGFR) were analyzed by western blot analysis. Also, the expression levels of tumor suppressors including miR-330, miR-145, and miR-34a were estimated by qRT-PCR. RESULTS: Analysis of paired specimens of primary malignant and normal tissues showed that miR-142-3p was downregulated, while Bach-1 mRNA and protein both were overexpressed in the breast cancer tumors. This inverse relationship was confirmed by cell line experiments demonstrating that miR-142-3p expression reduced Bach-1 mRNA levels. Furthermore, replacement of miR-142-3p could inhibit the proliferation, invasion, and migration in breast cancer potentially by targeting of Bach-1 mRNA and subsequent inhibition of CXCR4, MMP9, and VEGFR protein expressions. In addition, induction of miR-142-3p could upregulate tumor suppressor miRNAs, including miR-330, miR-145, and miR34a. CONCLUSION: For the first time, our results revealed that miR-142-3p could target Bach-1in breast cancer cells leading to the reduction of EMT-related proteins and reduced cell proliferation, invasion, and migration. The results also demonstrated that miR-142-3p could regulate important tumor suppressor miRNAs in breast cancer cells. In conclusion, our results suggest that miR-142-3p could be a good candidate for the targeted therapy of breast cancer, especially for the invasive type.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Neoplasias da Mama/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Invasividade Neoplásica , RNA Mensageiro , Regulação para Cima
7.
J Cell Physiol ; 234(9): 16043-16053, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30741415

RESUMO

Estrogen receptors (ERs) are involved in the development of many types of malignant tumors, in particular, breast cancer. Among others, ERs affect cell growth, proliferation, and differentiation. The microRNA (miRNA) miR-142-3p has been shown to inhibit carcinogenesis by regulating various cellular processes, including cell cycle progression, cell migration, apoptosis, and invasion. It does so via targeting molecules involved in a range of signaling pathways. We surgically collected 20 ER-positive breast cancer samples, each with matched adjacent normal breast tissue, and measured the expression of miR-142-3p via quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics methods, luciferase reporter assay, qRT-PCR, and western blot analysis were used to assess whether miR-142-3p could target ESR1, which encodes the estrogen receptor, in ER-positive breast cancer cells and patient samples. We also restored miRNA expression and performed cell viability, cytotoxicity, and colony formation assays. Western blot analysis and qRT-PCR were used to study the expression of apoptosis and stemness markers. We found that miR-142-3p is downregulated in ER-positive breast cancers. Restoration of miR-142-3p expression in ER-positive breast cancer cells reduced cell viability, induced apoptosis via the intrinsic pathway and decreased both colony formation and the expression of stem cell markers. Bioinformatic analysis predicted miR-142-3p could bind to 3'-untranslated region ESR1 messenger RNA (mRNA). Consistently, we demonstrated that miR-142-3p reduced luciferase activity in ER-positive breast cancer cells, and decreased ESR1 expression in both mRNA and protein levels. The results revealed miR-142-3p and ESR1 expression correlated negatively in ER-positive breast cancer samples. The results suggest miR-142-3p acts as a tumor suppressor via multiple mechanisms. Thus, restoration of miR-142-3p expression, for example, via miRNA replacement therapy, may represent an effective strategy for the treatment of ER-positive breast cancer patients.

8.
J Cell Physiol ; 234(10): 17714-17726, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30825204

RESUMO

During breast cancer progression, tumor cells acquire multiple malignant features. The transcription factors and cell cycle regulators high mobility group A2 (HMGA2) and BTB and CNC homology 1 (Bach-1) are overexpressed in several cancers, but the mechanistic understanding of how HMGA2 and Bach-1 promote cancer development has been limited. We found that HMGA2 and Bach-1 are overexpressed in breast cancer tissues and their expression correlates positively in tumors but not in normal tissues. Individual HMGA2 or Bach-1 knockdown downregulates expression of both proteins, suggesting a mutual stabilizing effect between the two proteins. Importantly, combined HMGA2 and Bach-1 knockdown additively decrease cell proliferation, migration, epithelial-to-mesenchymal transition, and colony formation, while promoting apoptotic cell death via upregulation of caspase-3 and caspase-9. First the first time, we show that HMGA2 and Bach-1 overexpression in tumors correlate positively and that the proteins cooperatively suppress a broad range of malignant cellular properties, such as proliferation, migration, clonogenicity, and evasion of apoptotic cell death. Thus, our observations suggest that combined targeting of HMGA2 and Bach1 may be an effective therapeutic strategy to treat breast cancer.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular/genética , Proteína HMGA2/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pessoa de Meia-Idade , Regulação para Cima/genética
9.
BMC Cancer ; 16: 7, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26747105

RESUMO

BACKGROUND: GAGE cancer/testis antigens are frequently expressed in various types of malignancies and represent attractive targets for immunotherapy, however their role in cancer initiation and progression has remained elusive. GAGE proteins are expressed in normal cells during early development with migratory and invasive properties and were found to be upregulated in cancer cells with metastasizing potential in a gastric cancer model. METHODS: We have addressed the direct role of GAGE proteins in supporting metastasis using an isogenic metastasis model of human cancer, consisting of 4 isogenic cell lines, which are equally tumorigenic in immunodeficient mice, but differ with their ability to generate metastases in the lungs and lymph nodes. RESULTS: Although GAGE proteins were strongly upregulated in the highly metastatic clone (CL16) compared to non-metastatic (NM2C5), weakly metastatic (M4A4) and moderately metastatic clones (LM3), stable downregulation of GAGE expression did not affect the ability of CL16 cells to establish primary tumors and form metastasis in the lungs of immunodeficient mice. CONCLUSIONS: These results suggest that GAGE proteins per se do not support metastasis and that further studies are needed to clarify the contribution of GAGE proteins to the metastatic potential of different types of cancer cells.


Assuntos
Antígenos de Neoplasias/biossíntese , Carcinogênese/genética , Metástase Linfática/genética , Neoplasias/genética , Animais , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática/patologia , Camundongos , Família Multigênica/genética , Invasividade Neoplásica/genética , Neoplasias/patologia , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Nucleic Acids Res ; 42(18): 11433-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25249625

RESUMO

Polycomb group (PcG) complexes regulate cellular identity through epigenetic programming of chromatin. Here, we show that SSX2, a germline-specific protein ectopically expressed in melanoma and other types of human cancers, is a chromatin-associated protein that antagonizes BMI1 and EZH2 PcG body formation and derepresses PcG target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. However, SSX2 does not affect the overall composition and stability of PcG complexes, and there is no direct concordance between SSX2 and BMI1/H3K27me3 presence at regulated genes. This suggests that SSX2 antagonizes PcG function through an indirect mechanism, such as modulation of chromatin structure. SSX2 binds double-stranded DNA in a sequence non-specific manner in agreement with the observed widespread association with chromatin. Our results implicate SSX2 in regulation of chromatin structure and function.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Proteínas do Grupo Polycomb/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/metabolismo , DNA/química , DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Histonas/metabolismo , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteínas de Neoplasias/fisiologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/química , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/antagonistas & inibidores , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , Proteínas Repressoras/fisiologia , Espermatogênese
11.
Int J Mol Sci ; 17(6)2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-27275820

RESUMO

Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies.


Assuntos
Expressão Ectópica do Gene , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Células Germinativas/metabolismo , Neoplasias/genética , Testículo/metabolismo , Animais , Aurora Quinase C/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Replicação do DNA , Humanos , Masculino , Meiose/genética , Neoplasias/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Poliploidia , Ligação Proteica , Recombinação Genética , Estresse Fisiológico , Complexo Sinaptonêmico/metabolismo
12.
Ugeskr Laeger ; 186(4)2024 01 22.
Artigo em Da | MEDLINE | ID: mdl-38305317

RESUMO

Aging impacts cancer development with incidence rising exponentially. Age-related genetic and epigenetic changes, along with the aging microenvironment, contribute to cancer development. In older individuals, tumours manifest a heightened mutational burden and distinct genetic changes which differ significantly from tumours observed in younger patients. The aging microenvironment accumulates senescent cells, altered matrix, and a dysregulated immune system. Age-related changes in the immune system fuel tumour development and treatment resistance. Understanding these processes is crucial for optimized treatment of older patients with cancer, as discussed in this review.


Assuntos
Envelhecimento , Neoplasias , Humanos , Idoso , Envelhecimento/genética , Neoplasias/genética , Neoplasias/terapia , Biologia , Sistema Imunitário , Microambiente Tumoral/genética
13.
J Immunother Cancer ; 12(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886115

RESUMO

Cancer/testis antigens (CTAs) are widely expressed in melanoma and lung cancer, emerging as promising targets for vaccination strategies and T-cell-based therapies in these malignancies. Despite recognizing the essential impact of intratumoral heterogeneity on clinical responses to immunotherapy, our understanding of intratumoral heterogeneity in CTA expression has remained limited. We employed single-cell mRNA sequencing to delineate the CTA expression profiles of cancer cells in clinically derived melanoma and lung cancer samples. Our findings reveal a high degree of intratumoral transcriptional heterogeneity in CTA expression. In melanoma, every cell expressed at least one CTA. However, most individual CTAs, including the widely used therapeutic targets NY-ESO-1 and MAGE, were confined to subpopulations of cells and were uncoordinated in their expression, resulting in mosaics of cancer cells with diverse CTA profiles. Coordinated expression was observed, however, mainly among highly structurally and evolutionarily related CTA genes. Importantly, a minor subset of CTAs, including PRAME and several members of the GAGE and MAGE-A families, were homogenously expressed in melanomas, highlighting their potential as therapeutic targets. Extensive heterogeneity in CTA expression was also observed in lung cancer. However, the frequency of CTA-positive cancer cells was notably lower and homogenously expressed CTAs were only identified in one of five tumors in this cancer type. Our findings underscore the need for careful CTA target selection in immunotherapy development and clinical testing and offer a rational framework for identifying the most promising candidates.


Assuntos
Antígenos de Neoplasias , Neoplasias Pulmonares , Melanoma , Análise de Célula Única , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/imunologia , Melanoma/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/imunologia , Análise de Célula Única/métodos , Masculino , Regulação Neoplásica da Expressão Gênica
14.
BMC Cancer ; 13: 466, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24103781

RESUMO

BACKGROUND: The unique expression pattern and immunogenic properties of cancer/testis antigens make them ideal targets for immunotherapy of cancer. The MAGE-A3 cancer/testis antigen is frequently expressed in non-small cell lung cancer (NSCLC) and vaccination with MAGE-A3 in patients with MAGE-A3-positive NSCLC has shown promising results. However, little is known about the expression of other cancer/testis antigens in NSCLC. In the present study the expression of cancer/testis antigens GAGE, NY-ESO-1 and SP17 was investigated in patients with completely resected, early stage, primary NSCLC. METHODS: Tumor biopsies from normal lung tissue and from a large cohort (n = 169) of NSCLC patients were examined for GAGE, NY-ESO-1 and SP17 protein expression by immunohistochemical analysis. The expression of these antigens was further matched to clinical and pathological features using univariate cox regression analysis. RESULTS: GAGE and NY-ESO-1 cancer/testis antigens were not expressed in normal lung tissue, while SP17 was expressed in ciliated lung epithelia. The frequency of GAGE, NY-ESO-1 and SP17 expression in NSCLC tumors were 26.0% (44/169), 11.8% (20/169) and 4.7% (8/169), respectively, and 33.1% (56/169) of the tumors expressed at least one of these antigens. In general, the expression of GAGE, NY-ESO-1 and SP17 was not significantly associated with a specific histotype (adenocarcinoma vs. squamous cell carcinoma), but high-level GAGE expression (>50%) was more frequent in squamous cell carcinoma (p = 0.02). Furthermore, the frequency of GAGE expression was demonstrated to be significantly higher in stage II-IIIa than stage I NSCLC (17.0% vs. 35.8%; p = 0.02). Analysis of the relation between tumor expression of GAGE and NY-ESO-1 and survival endpoints revealed no significant associations. CONCLUSION: Our study demonstrates that GAGE, NY-ESO-1 and SP17 cancer/testis antigens are candidate targets for immunotherapy of NSCLC and further suggest that multi-antigen vaccines may be beneficial.


Assuntos
Antígenos de Neoplasias/metabolismo , Antígenos de Superfície/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Transporte/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Membrana/metabolismo , Testículo/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Superfície/genética , Proteínas de Ligação a Calmodulina , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Proteínas de Transporte/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Proteínas de Membrana/genética , Estadiamento de Neoplasias , Prognóstico
15.
Cancer Lett ; 552: 215982, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309209

RESUMO

DNA methyltransferase (DNMT) inhibitors are used for treatment of certain hematological malignancies and exert anti-cancer activity through diverse mechanisms, including reexpression of tumor suppressor genes and anti-viral responses triggered by expression of endogenous retroviruses. Despite advances in the pharmacokinetic properties of DNMT inhibitors, the efficacy of these drugs in solid cancers remains low. Here, we show in cell lines and clinical and experimental tumors across multiple cancer types that DNMT inhibition induces the expression of interleukin-1 (IL-1), a cytokine with proinflammatory and protumorigenic properties. Specifically, this tumor-intrinsic IL-1 expression modulates the chemokine landscape of tumors and leads to the recruitment of monocytic myeloid-derived suppressor cells to the tumor microenvironment, processes that can be blocked by IL-1 antagonists. Molecular analysis demonstrates complex patterns of IL-1 and interferon activation and crosstalk in response to DNMT inhibition, which depend on the integrity of IRF- and NF-κB-mediated antiviral pathways and may determine the outcome of DNMT-inhibitor treatment. Together, our results show that DNMT inhibitors may negatively affect the microenvironment of a large subset of tumors and suggest that co-treatment with IL-1 antagonists may be a favorable combination for these patients.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Microambiente Tumoral , Interleucina-1 , DNA (Citosina-5-)-Metiltransferase 1 , Metilases de Modificação do DNA , DNA , Linhagem Celular Tumoral
16.
Front Immunol ; 14: 1240678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662956

RESUMO

Background: Therapeutic cancer vaccination against mutant calreticulin (CALR) in patients with CALR-mutant (CALRmut) myeloproliferative neoplasms (MPN) induces strong T-cell responses against mutant CALR yet fails to demonstrate clinical activity. Infiltration of tumor specific T cells into the tumor microenvironment is needed to attain a clinical response to therapeutic cancer vaccination. Aim: Determine if CALRmut specific T cells isolated from vaccinated patients enrich in the bone marrow upon completion of vaccination and explore possible explanations for the lack of enrichment. Methods: CALRmut specific T cells from four of ten vaccinated patients were expanded, enriched, and analyzed by T-cell receptor sequencing (TCRSeq). The TCRs identified were used as fingerprints of CALRmut specific T cells. Bone marrow aspirations from the four patients were acquired at baseline and at the end of trial. T cells were enriched from the bone marrow aspirations and analyzed by TCRSeq to identify the presence and fraction of CALRmut specific T cells at the two different time points. In silico calculations were performed to calculate the ratio between transformed cells and effector cells in patients with CALRmut MPN. Results: The fraction of CALRmut specific T cells in the bone marrow did not increase upon completion of the vaccination trial. In general, the T cell repertoire in the bone marrow remains relatively constant through the vaccination trial. The enriched and expanded CALRmut specific T cells recognize peripheral blood autologous CALRmut cells. In silico analyses demonstrate a high imbalance in the fraction of CALRmut cells and CALRmut specific effector T-cells in peripheral blood. Conclusion: CALRmut specific T cells do not enrich in the bone marrow after therapeutic cancer peptide vaccination against mutant CALR. The specific T cells recognize autologous peripheral blood derived CALRmut cells. In silico analyses demonstrate a high imbalance between the number of transformed cells and CALRmut specific effector T-cells in the periphery. We suggest that the high burden of transformed cells in the periphery compared to the number of effector cells could impact the ability of specific T cells to enrich in the bone marrow.


Assuntos
Vacinas Anticâncer , Transtornos Mieloproliferativos , Neoplasias , Humanos , Medula Óssea , Linfócitos T , Calreticulina/genética , Vacinas de Subunidades Antigênicas , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/terapia
17.
Genes (Basel) ; 13(1)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35052473

RESUMO

The transcription factor ZBED1 is highly expressed in trophoblast cells, but its functions in the processes of trophoblast and placental biology remain elusive. Here, we characterized the role of ZBED1 in trophoblast cell differentiation using an in vitro BeWo cell model. We demonstrate that ZBED1 is enhanced in its expression early after forskolin-induced differentiation of BeWo cells and regulates many of the genes that are differentially expressed as an effect of forskolin treatment. Specifically, genes encoding markers for the differentiation of cytotrophoblast into syncytiotrophoblast and factors essential for trophoblast cell fusion and invasion were negatively regulated by ZBED1, indicating that ZBED1 might be important for maintaining a steady pool of cytotrophoblast cells. In addition, ZBED1 affected genes involved in the regulation of trophoblast cell survival and apoptosis, in agreement with the observed increase in apoptosis upon knockdown of ZBED1 in forskolin-treated BeWo cells. In addition, genes implicated in the differentiation, recruitment, and function of innate immune cells by the placenta were affected by ZBED1, further suggesting a role for this protein in the regulation of maternal immune tolerance. In conclusion, our study implicates ZBED1 in major biological processes of placental biology.


Assuntos
Fusão Celular , Coriocarcinoma/patologia , Regulação da Expressão Gênica , Placenta/patologia , Fatores de Transcrição/metabolismo , Trofoblastos/patologia , Neoplasias Uterinas/patologia , Diferenciação Celular , Coriocarcinoma/genética , Coriocarcinoma/metabolismo , Feminino , Humanos , Placenta/metabolismo , Gravidez , Fatores de Transcrição/genética , Trofoblastos/metabolismo , Células Tumorais Cultivadas , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo
18.
Eur J Pharm Sci ; 178: 106282, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995349

RESUMO

Rat epidermal keratinocyte (REK) Organotypic culture (ROC) is an epidermis model that is robust and inexpensive to develop and maintain, and it has in previous studies been shown to have permeability characteristics close to those of human skin. Here, we characterize the model further by structural comparison to native human and rat skin and by investigating functional characteristics of lipid packing, polarity, and permeability coefficients. We show that the ROC model has structural similarities to native human skin and observe human skin-like permeability coefficients for testosterone and mannitol. We develop a transwell device that allows live cell microscopy of the tissue at the air-liquid interface and establish transgenic cell lines expressing different fluorescently tagged proteins. This enables showing the migration of keratinocytes during the first days after seeding, finding that keratinocytes have a higher mean migration rate in the earlier days of development. Collectively, our results show that the ROC model is an inexpensive and robust epidermis model that works reproducibly across laboratories.


Assuntos
Queratinócitos , Pele , Animais , Humanos , Queratinócitos/metabolismo , Lipídeos/química , Manitol , Ratos , Pele/metabolismo , Testosterona/metabolismo
19.
Cancers (Basel) ; 14(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36551639

RESUMO

The pivotal role of myeloid-derived suppressive cells (MDSCs) in cancer has become increasingly apparent over the past few years. However, to fully understand how MDSCs can promote human tumor progression and to develop strategies to target this cell type, relevant models that closely resemble the clinical complexity of human tumors are needed. Here, we show that mouse MDSCs of both the monocytic (M-MDCS) and the granulocytic (PMN-MDSC) lineages are recruited to human breast cancer patient-derived xenograft (PDX) tumors in mice. Transcriptomic analysis of FACS-sorted MDSC-subpopulations from the PDX tumors demonstrated the expression of several MDSC genes associated with both their mobilization and immunosuppressive function, including S100A8/9, Ptgs2, Stat3, and Cxcr2, confirming the functional identity of these cells. By combining FACS analysis, RNA sequencing, and immune florescence, we show that the extent and type of MDSC infiltration depend on PDX model intrinsic factors such as the expression of chemokines involved in mobilizing and recruiting tumor-promoting MDSCs. Interestingly, MDSCs have been shown to play a prominent role in breast cancer metastasis, and in this context, we demonstrate increased recruitment of MDSCs in spontaneous PDX lung metastases compared to the corresponding primary PDX tumors. We also demonstrate that T cell-induced inflammation enhances the recruitment of MDSC in experimental breast cancer metastases. In conclusion, breast cancer PDX models represent a versatile tool for studying molecular mechanisms that drive myeloid cell recruitment to primary and metastatic tumors and facilitate the development of innovative therapeutic strategies targeting these cells.

20.
Front Oncol ; 12: 998000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276095

RESUMO

Cancer/testis antigens are receiving attention as targets for cancer therapy due to their germ- and cancer cell-restricted expression. However, many of these antigens are inconsistently expressed among cancer types and individual tumors. Here, we show that members of the SSX cancer/testis antigen family comprise attractive targets in the majority of melanoma patients, as SSX is expressed in more than 90% of primary melanomas and metastases and plays a critical role in metastatic progression. Accordingly, SSX silencing in melanoma mouse xenograft models reduced tumor growth and completely abolished the formation of metastatic lesions in lungs and livers. Mechanistically, we demonstrate that silencing SSX in melanoma cells induces cell cycle S-phase stalling, leading to proliferative arrest and enhanced apoptosis, which elucidates the inhibitory effect of SSX loss on tumor growth and colonization capacity. Silencing SSX further compromised the capacity of melanoma cells to migrate and invade, influencing these cells' capability to spread and colonize. Taken together, these studies highlight SSX proteins as pivotal targets in melanoma with implications for blocking metastatic progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA