Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 260(6): 124, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39443340

RESUMO

MAIN CONCLUSION: The chromosome-level genome assembly of Citrullus colocynthis reveals its genetic potential for enhancing drought tolerance, paving the way for innovative crop improvement strategies. This study presents the first comprehensive genome assembly and annotation of Citrullus colocynthis, a drought-tolerant wild close relative of cultivated watermelon, highlighting its potential for enhancing agricultural resilience to climate change. The study achieved a chromosome-level assembly using advanced sequencing technologies, including PacBio HiFi and Hi-C, revealing a genome size of approximately 366 Mb with low heterozygosity and substantial repetitive content. Our analysis identified 23,327 gene models, that could encode stress response mechanisms for species' adaptation to arid environments. Comparative genomics with closely related species illuminated the evolutionary dynamics within the Cucurbitaceae family. In addition, resequencing of 27 accessions from the United Arab Emirates (UAE) identified genetic diversity, suggesting a foundation for future breeding programs. This genomic resource opens new avenues for the de novo domestication of C. colocynthis, offering a blueprint for developing crops with enhanced drought tolerance, disease resistance, and nutritional profiles, crucial for sustaining future food security in the face of escalating climate challenges.


Assuntos
Citrullus colocynthis , Produtos Agrícolas , Secas , Genoma de Planta , Genoma de Planta/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Citrullus colocynthis/genética , Citrullus colocynthis/fisiologia , Anotação de Sequência Molecular , Cromossomos de Plantas/genética , Citrullus/genética , Citrullus/crescimento & desenvolvimento , Citrullus/fisiologia , Emirados Árabes Unidos , Genômica/métodos , Variação Genética , Filogenia
2.
Plant Physiol ; 192(4): 2672-2686, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37148300

RESUMO

Cassava (Manihot esculenta Crantz) is an important staple crop for food security in Africa and South America. The present study describes an integrated genomic and metabolomic approach to the characterization of Latin American cassava germplasm. Classification based on genotyping correlated with the leaf metabolome and indicated a key finding of adaption to specific eco-geographical environments. In contrast, the root metabolome did not relate to genotypic clustering, suggesting the different spatial regulation of this tissue's metabolome. The data were used to generate pan-metabolomes for specific tissues, and the inclusion of phenotypic data enabled the identification of metabolic sectors underlying traits of interest. For example, tolerance to whiteflies (Aleurotrachelus socialis) was not linked directly to cyanide content but to cell wall-related phenylpropanoid or apocarotenoid content. Collectively, these data advance the community resources and provide valuable insight into new candidate parental breeding materials with traits of interest directly related to combating food security.


Assuntos
Manihot , Manihot/genética , Manihot/metabolismo , América Latina , Melhoramento Vegetal , Fenótipo , Genótipo
3.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293364

RESUMO

DNA methylation is the most studied epigenetic trait. It is considered a key factor in regulating plant development and physiology, and has been associated with the regulation of several genomic features, including transposon silencing, regulation of gene expression, and recombination rates. Nonetheless, understanding the relation between DNA methylation and recombination rates remains a challenge. This work explores the association between recombination rates and DNA methylation for two commercial rice varieties. The results show negative correlations between recombination rates and methylated cytosine counts for all contexts tested at the same time, and for CG and CHG contexts independently. In contrast, a positive correlation between recombination rates and methylated cytosine count is reported in CHH contexts. Similar behavior is observed when considering only methylated cytosines within genes, transposons, and retrotransposons. Moreover, it is shown that the centromere region strongly affects the relationship between recombination rates and methylation. Finally, machine learning regression models are applied to predict recombination using the count of methylated cytosines in the CHH context as the entrance feature. These findings shed light on the understanding of the recombination landscape of rice and represent a reference framework for future studies in rice breeding, genetics, and epigenetics.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Retroelementos/genética , Melhoramento Vegetal , Metilação de DNA , Citosina/metabolismo , Recombinação Genética , Regulação da Expressão Gênica de Plantas
4.
BMC Bioinformatics ; 17(1): 311, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27542753

RESUMO

BACKGROUND: Metagenomics holds great promises for deepening our knowledge of key bacterial driven processes, but metagenome assembly remains problematic, typically resulting in representation biases and discarding significant amounts of non-redundant sequence information. In order to alleviate constraints assembly can impose on downstream analyses, and/or to increase the fraction of raw reads assembled via targeted assemblies relying on pre-assembly binning steps, we developed a set of binning modules and evaluated their combination in a new "assembly-free" binning protocol. RESULTS: We describe a scalable multi-tiered binning algorithm that combines frequency and compositional features to cluster unassembled reads, and demonstrate i) significant runtime performance gains of the developed modules against state of the art software, obtained through parallelization and the efficient use of large lock-free concurrent hash maps, ii) its relevance for clustering unassembled reads from high complexity (e.g., harboring 700 distinct genomes) samples, iii) its relevance to experimental setups involving multiple samples, through a use case consisting in the "de novo" identification of sequences from a target genome (e.g., a pathogenic strain) segregating at low levels in a cohort of 50 complex microbiomes (harboring 100 distinct genomes each), in the background of closely related strains and the absence of reference genomes, iv) its ability to correctly identify clusters of sequences from the E. coli O104:H4 genome as the most strongly correlated to the infection status in 53 microbiomes sampled from the 2011 STEC outbreak in Germany, and to accurately cluster contigs of this pathogenic strain from a cross-assembly of these 53 microbiomes. CONCLUSIONS: We present a set of sequence clustering ("binning") modules and their application to biomarker (e.g., genomes of pathogenic organisms) discovery from large synthetic and real metagenomics datasets. Initially designed for the "assembly-free" analysis of individual metagenomic samples, we demonstrate their extension to setups involving multiple samples via the usage of the "alignment-free" d2S statistic to relate clusters across samples, and illustrate how the clustering modules can otherwise be leveraged for de novo "pre-assembly" tasks by segregating sequences into biologically meaningful partitions.


Assuntos
Algoritmos , Biomarcadores/química , Metagenoma , Metagenômica , Microbiota/genética , Conjuntos de Dados como Assunto , Humanos
5.
Sci Rep ; 14(1): 9205, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649738

RESUMO

Quinoa (Chenopodium quinoa Willd.), an Andean crop, is a facultative halophyte food crop recognized globally for its high nutritional value and plasticity to adapt to harsh conditions. We conducted a genome-wide association study on a diverse set of quinoa germplasm accessions. These accessions were evaluated for the following agronomic and biochemical traits: days to 50% flowering (DTF), plant height (PH), panicle length (PL), stem diameter (SD), seed yield (SY), grain diameter (GD), and thousand-grain weight (TGW). These accessions underwent genotyping-by-sequencing using the DNBSeq-G400R platform. Among all evaluated traits, TGW represented maximum broad-sense heritability. Our study revealed average SNP density of ≈ 3.11 SNPs/10 kb for the whole genome, with the lowest and highest on chromosomes Cq1B and Cq9A, respectively. Principal component analysis clustered the quinoa population in three main clusters, one clearly representing lowland Chilean accessions, whereas the other two groups corresponded to germplasm from the highlands of Peru and Bolivia. In our germplasm set, we estimated linkage disequilibrium decay to be ≈ 118.5 kb. Marker-trait analyses revealed major and consistent effect associations for DTF on chromosomes 3A, 4B, 5B, 6A, 7A, 7B and 8B, with phenotypic variance explained (PVE) as high as 19.15%. Nine associations across eight chromosomes were also found for saponin content with 20% PVE by qSPN5A.1. More QTLs were identified for PL and TGW on multiple chromosomal locations. We identified putative candidate genes in the genomic regions associated with DTF and saponin content. The consistent and major-effect genomic associations can be used in fast-tracking quinoa breeding for wider adaptation across marginal environments.


Assuntos
Chenopodium quinoa , Genoma de Planta , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Fenótipo , Peru , Genótipo , Bolívia , Cromossomos de Plantas/genética , Característica Quantitativa Herdável
6.
PLoS One ; 18(2): e0281804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795698

RESUMO

Meiotic recombination is a crucial cellular process, being one of the major drivers of evolution and adaptation of species. In plant breeding, crossing is used to introduce genetic variation among individuals and populations. While different approaches to predict recombination rates for different species have been developed, they fail to estimate the outcome of crossings between two specific accessions. This paper builds on the hypothesis that chromosomal recombination correlates positively to a measure of sequence identity. It presents a model that uses sequence identity, combined with other features derived from a genome alignment (including the number of variants, inversions, absent bases, and CentO sequences) to predict local chromosomal recombination in rice. Model performance is validated in an inter-subspecific indica x japonica cross, using 212 recombinant inbred lines. Across chromosomes, an average correlation of about 0.8 between experimental and prediction rates is achieved. The proposed model, a characterization of the variation of the recombination rates along the chromosomes, can enable breeding programs to increase the chances of creating novel allele combinations and, more generally, to introduce new varieties with a collection of desirable traits. It can be part of a modern panel of tools that breeders can use to reduce costs and execution times of crossing experiments.


Assuntos
Oryza , Melhoramento Vegetal , Humanos , Genoma , Cromossomos/genética , Recombinação Homóloga , Fenótipo , Oryza/genética
7.
EMBO Mol Med ; 15(12): e18459, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37937685

RESUMO

Triple-negative breast cancer (TNBC) often develops resistance to single-agent treatment, which can be circumvented using targeted combinatorial approaches. Here, we demonstrate that the simultaneous inhibition of LOXL2 and BRD4 synergistically limits TNBC proliferation in vitro and in vivo. Mechanistically, LOXL2 interacts in the nucleus with the short isoform of BRD4 (BRD4S), MED1, and the cell cycle transcriptional regulator B-MyB. These interactions sustain the formation of BRD4 and MED1 nuclear transcriptional foci and control cell cycle progression at the gene expression level. The pharmacological co-inhibition of LOXL2 and BRD4 reduces BRD4 nuclear foci, BRD4-MED1 colocalization, and the transcription of cell cycle genes, thus suppressing TNBC cell proliferation. Targeting the interaction between BRD4S and LOXL2 could be a starting point for the development of new anticancer strategies for the treatment of TNBC.


Assuntos
Fatores de Transcrição , Neoplasias de Mama Triplo Negativas , Humanos , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Proteínas que Contêm Bromodomínio , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Animais
8.
PLoS One ; 17(1): e0262412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34995328

RESUMO

Cassava (Manihot esculenta Crantz) biofortification with provitamin A carotenoids is an ongoing process that aims to alleviate vitamin A deficiency. The moderate content of provitamin A carotenoids achieved so far limits the contribution to providing adequate dietary vitamin A levels. Strategies to increase carotenoid content focused on genes from the carotenoids biosynthesis pathway. In recent years, special emphasis was given to ORANGE protein (OR), which promotes the accumulation of carotenoids and their stability in several plants. The aim of this work was to identify, characterize and investigate the role of OR in the biosynthesis and stabilization of carotenoids in cassava and its relationship with phytoene synthase (PSY), the rate-limiting enzyme of the carotenoids biosynthesis pathway. Gene and protein characterization of OR, expression levels, protein amounts and carotenoids levels were evaluated in roots of one white (60444) and two yellow cassava cultivars (GM5309-57 and GM3736-37). Four OR variants were found in yellow cassava roots. Although comparable expression was found for three variants, significantly higher OR protein amounts were observed in the yellow varieties. In contrast, cassava PSY1 expression was significantly higher in the yellow cultivars, but PSY protein amount did not vary. Furthermore, we evaluated whether expression of one of the variants, MeOR_X1, affected carotenoid accumulation in cassava Friable Embryogenic Callus (FEC). Overexpression of maize PSY1 alone resulted in carotenoids accumulation and induced crystal formation. Co-expression with MeOR_X1 led to greatly increase of carotenoids although PSY1 expression was high in the co-expressed FEC. Our data suggest that posttranslational mechanisms controlling OR and PSY protein stability contribute to higher carotenoid levels in yellow cassava. Moreover, we showed that cassava FEC can be used to study the efficiency of single and combinatorial gene expression in increasing the carotenoid content prior to its application for the generation of biofortified cassava with enhanced carotenoids levels.


Assuntos
Carotenoides/metabolismo , Manihot/metabolismo , Proteínas de Plantas/metabolismo , Provitaminas/metabolismo , Vitamina A/metabolismo , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Manihot/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA