Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 250(0): 129-144, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37965707

RESUMO

Locally aromatic alkyl-N-substituted squarephaneic tetraimide (SqTI) conjugated macrocycles are four-electron reducible, owing to global aromaticity and presumed global Baird aromaticity of the dianion and tetraanion states, respectively. However, their good solubility inhibits their application as a battery electrode material. By applying sidechain removal as a strategy to reduce SqTI solubility, we report the development of its unsubstituted derivative SqTI-H, which was obtained directly from squarephaneic tetraanhydride by facile treatment with hexamethyldisilazane and MeOH. Compared to alkyl-N-substituted SqTI-Rs, SqTI-H exhibited further improved thermal stability and low neutral state solubility in most common organic solvents, owing to computationally demonstrated hydrogen-bonding capabilities emanating from each imide position on SqTI-H. Reversible solid state electrochemical reduction of SqTI-H to the globally aromatic dianion state was also observed at -1.25 V vs. Fc/Fc+, which could be further reduced in two stages. Preliminary testing of SqTI-H in composite electrodes for lithium-organic half cells uncovered imperfect cycling performance, which may be explained by persistent solubility of reduced states, necessitating further optimisation of electrode fabrication procedures to attain maximum performance.

2.
Angew Chem Int Ed Engl ; 61(48): e202212623, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36178733

RESUMO

Aromatic carboxylic anhydrides are ubiquitous building blocks in organic materials chemistry and have received considerable attention in the synthesis of organic semiconductors, pigments, and battery electrode materials. Here we extend the family of aromatic carboxylic anhydrides with a unique new member, a conjugated cyclophane with four anhydride groups. The cyclophane is obtained in a three-step synthesis and can be functionalised efficiently, as shown by the conversion into tetraimides and an octacarboxylate. Crystal structures reveal the high degree of porosity achievable with the new building block. Excellent electrochemical properties and reversible reduction to the tetraanions are shown for the imides; NMR and EPR measurements confirm the global aromaticity of the dianions and evidence the global Baird aromaticity of the tetraanions. Considering the short synthesis and unique properties, we expect widespread use of the new building block in the development of organic materials.

3.
Phys Chem Chem Phys ; 23(28): 15150-15158, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34259270

RESUMO

Excited-state symmetry breaking is investigated in a series of symmetric 9,10-dicyanoanthracenes linked to electron-donating groups on the 2 and 6 positions via different spacers, allowing for a tuning of the length of the donor-acceptor branches. The excited-state properties of these compounds are compared with their dipolar single-branch analogues. The changes in electronic structure upon their optical excitation are monitored by transient electronic spectroscopy in the visible and near-infrared regions as well as by transient vibrational spectroscopy in the mid-infrared. Our results reveal that, with the shortest branches, electronic excitation remains distributed almost symmetrically over the molecule even in polar environments. Upon increasing the donor-acceptor distance, excitation becomes unevenly distributed and, with the longest one, it fully localises on one branch in polar solvents. The influence of the branch length on the propensity of quadrupolar dyes to undergo excited-state symmetry breaking is rationalised in terms of the balance between interbranch coupling and solvation energy.

4.
European J Org Chem ; 2021(17): 2529-2539, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34248413

RESUMO

Aromaticity is a central concept in chemistry, pervading areas from biochemistry to materials science. Recently, chemists also started to exploit intricate phenomena such as the interplay of local and global (anti)aromaticity or aromaticity in non-planar systems and three dimensions. These phenomena pose new challenges in terms of our fundamental understanding and the practical visualisation of aromaticity. To overcome these challenges, a method for the visualisation of chemical shielding tensors (VIST) is developed here that allows for a 3D visualisation with quantitative information about the local variations and anisotropy of the chemical shielding. After exemplifying the method in different planar hydrocarbons, we study two non-planar macrocycles to show the unique benefits of the VIST method for molecules with competing π-conjugated systems and conclude with a norcorrole dimer showing clear evidence of through-space aromaticity. We believe that the VIST method will be a highly valuable addition to the computational toolbox.

5.
Angew Chem Int Ed Engl ; 60(11): 5970-5977, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33315288

RESUMO

Reported here is a new high electron affinity acceptor end group for organic semiconductors, 2,1,3-benzothiadiazole-4,5,6-tricarbonitrile (TCNBT). An n-type organic semiconductor with an indacenodithiophene (IDT) core and TCNBT end groups was synthesized by a sixfold nucleophilic substitution with cyanide on a fluorinated precursor, itself prepared by a direct arylation approach. This one-step chemical modification significantly impacted the molecular properties: the fluorinated precursor, TFBT IDT, a poor ambipolar semiconductor, was converted into TCNBT IDT, a good n-type semiconductor. The electron-deficient end group TCNBT dramatically decreased the energy of the highest occupied and lowest unoccupied molecular orbitals (HOMO/LUMO) compared to the fluorinated analogue and improved the molecular orientation when utilized in n-type organic field-effect transistors (OFETs). Solution-processed OFETs based on TCNBT IDT exhibited a charge-carrier mobility of up to µe ≈0.15 cm2 V-1 s-1 with excellent ambient stability for 100 hours, highlighting the benefits of the cyanated end group and the synthetic approach.

6.
J Org Chem ; 85(12): 8240-8244, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32447951

RESUMO

A method for the synthesis of 2,3,6,7-substituted anthracene derivatives, one of the most challenging anthracene substitution patterns to obtain, is presented. The method is exemplified by the preparation of 2,3,6,7-anthracenetetracarbonitrile and employs a newly developed, stable, protected 1,2,4,5-benzenetetracarbaldehyde as the precursor. The precursor can be obtained in two scalable synthetic steps from 2,5-dibromoterephthalaldehyde and is converted into the anthracene derivative by a double intermolecular Wittig reaction under very mild conditions, followed by a deprotection and intramolecular double ring-closing condensation reaction.

7.
Angew Chem Int Ed Engl ; 59(35): 15050-15060, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32255546

RESUMO

Various polyimides and polyamides have recently been prepared via hydrothermal synthesis in nothing but H2 O under high-pressure and high-temperature conditions. However, none of the prepared polymers feature a truly conjugated polymer backbone. Here, we report on an expansion of the synthetic scope of this straightforward and inherently environmentally friendly polymerization technique to the generation of conjugated polymers. Selected representatives of two different polymer classes, pyrrone polymers and polybenzimidazoles, were generated hydrothermally. We present a mechanistic discussion of the polymer formation process as well as an electrochemical characterization of the most promising product.

8.
Angew Chem Int Ed Engl ; 59(31): 12958-12964, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32368821

RESUMO

Aromatic organic compounds can be used as electrode materials in rechargeable batteries and are expected to advance the development of both anode and cathode materials for sodium-ion batteries (SIBs). However, most aromatic organic compounds assessed as anode materials in SIBs to date exhibit significant degradation issues under fast-charge/discharge conditions and unsatisfying long-term cycling performance. Now, a molecular design concept is presented for improving the stability of organic compounds for battery electrodes. The molecular design of the investigated compound, [2.2.2.2]paracyclophane-1,9,17,25-tetraene (PCT), can stabilize the neutral state by local aromaticity and the doubly reduced state by global aromaticity, resulting in an anode material with extraordinarily stable cycling performance and outstanding performance under fast-charge/discharge conditions, demonstrating an exciting new path for the development of electrode materials for SIBs and other types of batteries.

12.
Angew Chem Int Ed Engl ; 57(38): 12270-12274, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-29897647

RESUMO

Highly fused, fully conjugated aromatic compounds are interesting candidates for organic electronics. With higher crystallinity their electronic properties improve. It is shown here that the crystallization of three archetypes of such molecules-pentacenetetrone, indigo, and perinone-can be achieved hydrothermally. Given their molecular structure, this is a truly startling finding. In addition, it is demonstrated that perinone can also be synthesized in solely high-temperature water from the starting compounds naphthalene bisanhydride and o-phenylene diamine without the need for co-solvents or catalysts. The transformation can be drastically accelerated by the application of microwave irradiation. This is the first report on the hydrothermal generation of two fused heterocycles.

13.
Phys Chem Chem Phys ; 19(27): 18055-18067, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28671704

RESUMO

A series of 1,2,3-triazole linked donor-acceptor chromophores are prepared by Click Chemistry from ene-yne starting materials. The effects of three distinct chemical variations are investigated: enhancing the acceptor strength through oxidation of the sulphur atom, alteration of the double bond configuration, and variation of the triazole substitution pattern. A detailed photophysical characterization shows that these alterations have a negligible effect on the absorption while dramatically altering the emission wavelengths. In addition, strong solvatochromism is found leading to significant red shifts in the case of polar solvents. The experimental findings are rationalized and related to the electronic structure properties of the chromophores by time-dependent density functional theory as well as the ab initio algebraic diagrammatic construction method for the polarization propagator in connection with a new formalism allowing to model the influence of solvation onto long-lived excited states and their emission energies. These calculations highlight the varying degree of intramolecular charge transfer character present for the different molecules and show that the amount of charge transfer is strongly modulated by the conducted chemical modifications, by the solvation of the chromophores, and by the structural relaxation in the excited state. It is, furthermore, shown that enhanced charge separation, as induced by chemical modification or solvation, reduces the singlet-triplet gaps and that two of the investigated molecules possess sufficiently low gaps to be considered as candidates for thermally activated delayed fluorescence.

14.
Chemistry ; 22(15): 5173-80, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26928957

RESUMO

A generally applicable direct synthesis of cyanoarenes from quinones is presented. Particular emphasis is placed on the preparation of precursors and target molecules relevant for organic materials, including halogenated cyanoarenes and larger cyanated acenes. The reaction and work-up protocols are adjusted for the challenges presented by the different substrates and products. Screening results of the initial reaction optimization are given to further facilitate adaptation to other synthetic problems. The universality of the reaction is finally highlighted by successful substitution of para-quinones by an ortho-quinone as the starting material.

15.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 7): 39-42, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25161502

RESUMO

The asymmetric units of the title compounds, C10H8N6O4, (I), and C14H16N6O4, (II), each contain half of the respective mol-ecule which is completed by inversion symmetry. The two molecules differ in the ester moiety (acetate versus butyrate) and the crystal symmetry is different, i.e. triclinic for (I) and monoclinic for (II). The di-azido-phenyl-ene moieties are essentially planar [maximum deviation of 0.0216 (7) Šfor (I) and 0.0330 (14) Šfor (II)], and the ester functionalities are almost perpendicular to these planes, making dihedral angles of 79.93 (3)° for (I) and 79.42 (6)° for (II). In the crystals of both (I) and (II), there are no significant inter-molecular inter-actions present.

16.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 8): 77-9, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25249859

RESUMO

The asymmetric unit of the title compound, C14H22N2O2Si2, contains one half of the mol-ecule, which is completed by inversion symmetry. The cyclo-hexa-2,5-diene ring is exactly planar and reflects the bond-length distribution of a pair of located double bonds [1.3224 (14) Å] and two pairs of single bonds [1.5121 (13) and 1.5073 (14) Å]. The tetra-hedral angle between the sp (3)-C atom and the two neighbouring sp (2)-C atoms in the cyclo-hexa-2,5-diene ring is enlarged by about 3°.

17.
Mol Syst Des Eng ; 8(6): 713-720, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37288099

RESUMO

Conjugated macrocycles can exhibit concealed antiaromaticity; that is, despite not being antiaromatic, under specific circumstances, they can display properties typically observed in antiaromatic molecules due to their formal macrocyclic 4n π-electron system. Paracyclophanetetraene (PCT) and its derivatives are prime examples of macrocycles exhibiting this behaviour. In redox reactions and upon photoexcitation, they have been shown to behave like antiaromatic molecules (requiring type I and II concealed antiaromaticity, respectively), with such phenomena showing potential for use in battery electrode materials and other electronic applications. However, further exploration of PCTs has been hindered by the lack of halogenated molecular building blocks that would permit their integration into larger conjugated molecules by cross-coupling reactions. Here, we present two dibrominated PCTs, obtained as a mixture of regioisomers from a three-step synthesis, and demonstrate their functionalisation via Suzuki cross-coupling reactions. Optical, electrochemical, and theoretical studies reveal that aryl substituents can subtly tune the properties and behaviour of PCT, showing that this is a viable strategy in further exploring this promising class of materials.

18.
Mater Horiz ; 9(11): 2678-2697, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-35983884

RESUMO

Post-polymerisation functionalisation provides a facile and efficient way for the introduction of functional groups on the backbone of conjugated polymers. Using post-polymerisation functionalisation approaches, the polymer chain length is usually not affected, meaning that the resulting polymers only differ in their attached functional groups or side chains, which makes them particularly interesting for investigating the influence of the different groups on the polymer properties. For such functionalisations, highly efficient and selective reactions are needed to avoid the formation of complex mixtures or permanent defects in the polymer backbone. A variety of suitable synthetic approaches and reactions that fulfil these criteria have been identified and reported. In this review, a thorough overview is given of the post-polymerisation functionalisations reported to date, with the methods grouped based on the type of reaction used: cycloaddition, oxidation/reduction, nucleophilic aromatic substitution, or halogenation and subsequent cross-coupling reaction. Instead of modifications on the aliphatic side chains of the conjugated polymers, we focus on modifications directly on the conjugated backbones, as these have the most pronounced effect on the optical and electronic properties. Some of the discussed materials have been used in applications, ranging from solar cells to bioelectronics. By providing an overview of this versatile and expanding field for the first time, we showcase post-polymerisation functionalisation as an exciting pathway for the creation of new conjugated materials for a range of applications.


Assuntos
Eletrônica , Polímeros , Polímeros/química , Polimerização
19.
Angew Chem Weinheim Bergstr Ger ; 134(48): e202212623, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38504923

RESUMO

Aromatic carboxylic anhydrides are ubiquitous building blocks in organic materials chemistry and have received considerable attention in the synthesis of organic semiconductors, pigments, and battery electrode materials. Here we extend the family of aromatic carboxylic anhydrides with a unique new member, a conjugated cyclophane with four anhydride groups. The cyclophane is obtained in a three-step synthesis and can be functionalised efficiently, as shown by the conversion into tetraimides and an octacarboxylate. Crystal structures reveal the high degree of porosity achievable with the new building block. Excellent electrochemical properties and reversible reduction to the tetraanions are shown for the imides; NMR and EPR measurements confirm the global aromaticity of the dianions and evidence the global Baird aromaticity of the tetraanions. Considering the short synthesis and unique properties, we expect widespread use of the new building block in the development of organic materials.

20.
Open Res Eur ; 1: 111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645175

RESUMO

Background: Poly( p-phenylene vinylene)s ( PPVs) and [2.2.2.2]paracyclophanetetraene ( PCT) are both composed of alternating π-conjugated para-phenylene and vinylene units. However, while the former constitute a class of π-conjugated polymers that has been used in organic electronics for decades, the latter is a macrocycle that only recently revealed its potential for applications such as organic battery electrodes. The cyclic structure endows PCT with unusual properties, and further tuning of these may be required for specific applications. Methods: In this article, we adopt an approach often used for tuning the properties of PPVs, the introduction of alkoxy (or alkylthio) substituents at the phenylene units, for tuning the optoelectronic properties of PCT. The resulting methoxy- and methylthio-substituted PCTs, obtained by Wittig cyclisation reactions, are studied by UV-vis absorption, photoluminescence, and cyclic voltammetry measurements, and investigated computationally using the visualisation of chemical shielding tensors (VIST) method. Results: The measurements show that substitution leads to slight changes in terms of absorption/emission energies and redox potentials while having a pronounced effect on the photoluminescence intensity. The computations show the effect of the substituents on the ring currents and chemical shielding and on the associated local and global (anti)aromaticity of the macrocycles, highlighting the interplay of local and global aromaticity in various electronic states. Conclusions: The study offers interesting insights into the tuneability of the properties of this versatile class of π-conjugated macrocycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA