Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Anal Chem ; 94(7): 3135-3141, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35152703

RESUMO

The analysis of 1D anti-diagonal spectra from the projections of 2D double-quantum filtered correlation spectroscopy NMR spectra is presented for the determination of the compositions of liquid mixtures of linear and branched alkanes confined within porous media. These projected spectra do not include the effects of line broadening and therefore retain high-resolution information even in the presence of inhomogeneous magnetic fields as are commonly found in porous media. A partial least-square regression analysis is used to characterize the mixture compositions. Two case studies are considered. First, mixtures of 2-methyl alkanes and n-alkanes are investigated. It is shown that estimation of the mol % of branched species present was achieved with a root-mean-square error of prediction (RMSEP) of 1.4 mol %. Second, the quantification of multicomponent mixtures consisting of linear alkanes and 2-, 3-, and 4-monomethyl alkanes was considered. Discrimination of 2-methyl and linear alkanes from other branched isomers in the mixture was achieved, although discrimination between 3- and 4- monomethyl alkanes was not possible. Compositions of the linear alkane, 2-methyl alkane, and the total composition of 3- and 4-methyl alkanes were estimated with a RMSEP <3 mol %. The approach was then used to estimate the composition of the mixtures in terms of submolecular groups of CH3CH2, (CH3)2CH, and CH2CH(CH3)CH2 present in the mixtures; a RMSEP <1 mol % was achieved for all groups. The ability to characterize the mixture compositions in terms of molecular subgroups allows the application of the method to characterize mixtures containing multimethyl alkanes. The motivation for this work is to develop a method for determining the mixture composition inside the catalyst pores during Fischer-Tropsch synthesis. However, the method reported is generic and can be applied to any system in which there is a need to characterize mixture compositions of linear and branched alkanes.


Assuntos
Alcanos , Hidrocarbonetos , Alcanos/análise , Hidrocarbonetos/química , Isomerismo , Espectroscopia de Ressonância Magnética , Porosidade
2.
Anal Chem ; 92(7): 5125-5133, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142268

RESUMO

Pulsed field gradient (PFG) NMR measurements, combined with a novel optimization method, are used to determine the composition of hydrocarbon mixtures of linear alkanes (C7-C16) in both the bulk liquid state and when imbibed within a porous medium of mean pore diameter 28.6 nm. The method predicts the average carbon number of a given mixture to an accuracy of ±1 carbon number and the mole fraction of a mixture component to within an average root-mean-square error of ±0.036 with just three calibration mixtures. Given that the method can be applied at any conditions of temperature and pressure at which the PFG NMR measurements are made, the method has the potential for application in characterizing hydrocarbon liquid mixtures inside porous media and at the operating conditions relevant to, for example, hydrocarbon recovery and heterogeneous catalysis.

3.
Chemphyschem ; 19(9): 1081-1088, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29385314

RESUMO

In this work, using 1 H and 19 F PFG NMR, we probe the effect of temperature, ion size/type and glucose dissolution on the rate of transport in 1-ethyl-3-methylimidazolium ([EMIM]+ )-based ionic liquids by measuring self-diffusion coefficients. Using such data, we are able to establish the degree of ion pairing and quantify the extent of ionic aggregation during diffusion. For the neat 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) a strong degree of ion pairing is observed. The substitution of the [OAc]- anion with the bis{(trifluoromethyl)sulfonyl}imide ([TFSI]- ) anion reduces the pairing between the ions, which is attributed to a lower electric charge density on the [TFSI]- anion, hence a weaker electric interaction with the [EMIM]+ cation. The effect of glucose, important for applications of ionic liquids as extracting media, on the strongly paired [EMIM][OAc] sample was also investigated and it is observed that the carbohydrate decreases the degree of ion pairing, which is attributed to the ability of glucose to disrupt inter-ionic interactions by forming hydrogen bonding, particularly with the [OAc]- anion. Calculations of aggregation number from diffusion data show that the [OAc]- anion diffuses as a part of larger aggregates compared to the [EMIM]+ cation. The results and analysis presented here show the usefulness of PFG NMR in studies of ionic liquids, giving new insights into ion pairing and aggregation and the factors affecting these parameters.

4.
Chemphyschem ; 19(19): 2472-2479, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-29923663

RESUMO

The ratio of NMR relaxation time constants T 1 / T 2 provides a non-destructive indication of the relative surface affinities exhibited by adsorbates within liquid-saturated mesoporous catalysts. In the present work we provide supporting evidence for the existence of a quantitative relationship between such measurements and adsorption energetics. As a prototypical example with relevance to green chemical processes we examine and contrast the relaxation characteristics of primary alcohols and cyclohexane within an industrial silica catalyst support. T 1 / T 2 values obtained at intermediate magnetic field strength are in good agreement with DFT adsorption energy calculations performed on single molecules interacting with an idealised silica surface. Our results demonstrate the remarkable ability of this metric to quantify surface affinities within systems of relevance to liquid-phase heterogeneous catalysis, and highlight NMR relaxation as a powerful method for the determination of adsorption phenomena within mesoporous solids.

5.
Faraday Discuss ; 204: 439-452, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28770933

RESUMO

NMR relaxation has recently emerged as a novel and non-invasive tool for probing the surface dynamics of adsorbate molecules within liquid-saturated mesoporous catalysts. The elucidation of such dynamics is of particular relevance to the study and development of solvated green catalytic processes, such as the production of chemicals and fuels from bio-resources. In this paper we develop and implement a protocol using high field 1H NMR spin-lattice relaxation as a probe of the reorientational dynamics of liquids imbibed within mesoporous oxide materials. The observed relaxation of liquids within mesoporous materials is highly sensitive to the adsorbed surface layer, giving insight into tumbling behaviour of spin-bearing chemical environments at the pore surface. As a prototypical example of relevance to liquid-phase catalytic systems, we examine the mobility of liquid methanol within a range of common catalyst supports. In particular, through the calculation and comparison of a suitable interaction parameter, we assess and quantify changes to these surface dynamics upon replacing surface hydroxyl groups with hydrophobic alkyl chains. Our results indicate that the molecular tumbling of adsorbed methanol is enhanced upon surface passivation due to the suppression of surface-adsorbate hydrogen bonding interactions, and tends towards that of the unrestricted bulk liquid. A complex analysis in which we account for the influence of changing pore structure and surface chemistry upon passivation is discussed. The results presented highlight the use of NMR spin-lattice relaxation measurements as a non-invasive probe of molecular dynamics at surfaces of interest to liquid-phase heterogeneous catalysis.

6.
Soft Matter ; 13(16): 2952-2961, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28358151

RESUMO

Gelatin gels are increasingly involved in many industrial applications due to several advantages including cost efficiency and biocompatibility. Generally, their production requires the use of aqueous solvents, which cause significant swelling, due to the ability of solvent molecules to penetrate through the gel microstructure and increase its volume. Since swelling mechanisms and their effect on the gel structure are not fully understood, further investigations are required. In this work, we combine macroscopic measurements of the swelling ratio (SR) with Nuclear Magnetic Resonance (NMR) and Confocal Laser Scanning Microscopy (CLSM) to investigate changes in the gelatin structure as a function of both polymer concentration and swelling time. SR values increase as a function of time until a maximum is reached and then show a slight drop for all the gelatin concentrations after 24 h swelling time, probably due to a network relaxation process. NMR allows determination of mass transport and molecular dynamics of water inside the gelatin pores, while CLSM is used to visualize the penetration of tracers (polystyrene microbeads) with a diameter much larger than the gel pores. Structural parameters, such as average pore size and tortuosity, are estimated. In particular, the pore size decreases for higher polymer concentration and increases during swelling, until reaching a maximum, and then dropping at longer times. The penetration of tracers provides evidence of the heterogeneity of the gel structure and shows that single microcarriers can be loaded in gelatin gels upon swelling.

7.
Pharm Res ; 34(5): 941-956, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27633887

RESUMO

PURPOSE: Investigate the extended release behaviour of compacts containing mixtures of hydrophilic HPMC and PEO in hydrating media of differing ionic strengths. METHODS: The extended release behaviour of various HPMC:PEO compacts was investigated using dissolution testing, confocal microscopy and magnetic resonance imaging, with respect to polymer ratio and ionic strength of the hydrating media. RESULTS: Increasing HPMC content gave longer extended release times, but a greater sensitivity to high ionic dissolution environments. Increasing PEO content reduced this sensitivity. The addition of PEO to a predominantly HPMC matrix reduced release rate sensitivity to high ionic environments. Confocal microscopy of early gel layer development showed the two polymers appeared to contribute independently to gel layer structure whilst together forming a coherent and effective diffusion barrier. There was some evidence that poorly swollen HPMC particles added a tortuosity barrier to the gel layer in high ionic strength environments, resulting in prolonged extended release. MRI provides unique, non-invasive spatially resolved information from within the HPMC:PEO compacts that furthers our understanding of USP 1 and USP 4 dissolution data. CONCLUSIONS: Confocal microscopy and MRI data show that combinations of HPMC and PEO have advantageous extended release properties, in comparison with matrices containing a single polymer.


Assuntos
Preparações de Ação Retardada/química , Derivados da Hipromelose/química , Íons/química , Polietilenoglicóis/química , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar , Polímeros/química , Sensibilidade e Especificidade , Solubilidade
8.
Phys Chem Chem Phys ; 19(2): 1686, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27973624

RESUMO

Correction for 'Molecular and ionic diffusion in aqueous - deep eutectic solvent mixtures: probing inter-molecular interactions using PFG NMR' by Carmine D'Agostino et al., Phys. Chem. Chem. Phys., 2015, 17, 15297-15304.

9.
Phys Chem Chem Phys ; 18(26): 17237-43, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27052196

RESUMO

Total neutron scattering has been used to follow the hydrogenation of toluene-d8 to methylcyclohexane-d14 over 3 wt% platinum supported on highly ordered mesoporous silica (MCM-41) at 298 K and under 150 mbar D2 pressure. The detailed kinetic information so revealed indicates that liquid reorganisation inside pores is the slowest step of the whole process. Additionally, the results were compared with the reaction performed under 250 mbar D2 pressure as well as with toluene-h8 hydrogenation using D2 at 150 mbar.

10.
Phys Chem Chem Phys ; 17(8): 5999-6008, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25642466

RESUMO

Terahertz time-domain spectroscopy is used to explore hydrogen bonding structure and dynamics in binary liquid mixtures, spanning a range of protic-protic, protic-aprotic and aprotic-aprotic systems. A direct absorption coefficient analysis is compared against more complex Debye analysis and we observed good agreement of the two methods in determining the hydrogen bonding properties when at least one of the mixture components is protic. When both components are aprotic, we show that the trend in absorption coefficients match well with the theoretical trend in strength of hydrogen bond interactions predicted based on steric and electronic properties of the components.


Assuntos
Espectroscopia Terahertz , Ligação de Hidrogênio , Metanol/química , Solventes/química , Água/química
11.
Phys Chem Chem Phys ; 17(23): 15297-15304, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25994171

RESUMO

Pulsed field gradient (PFG) NMR has been used to probe self-diffusion of molecular and ionic species in aqueous mixtures of choline chloride (ChCl) based deep eutectic solvents (DESs), in order to elucidate the effect of water on motion and inter-molecular interactions between the different species in the mixtures, namely the Ch(+) cation and hydrogen bond donor (HBD). The results reveal an interesting and complex behaviour of such mixtures at a molecular level. In general, it is observed that the hydroxyl protons ((1)H) of Ch(+) and the hydrogen bond donor have diffusion coefficients significantly different from those measured for their parent molecules when water is added. This indicates a clear and significant change in inter-molecular interactions. In aqueous Ethaline, the hydroxyl species of Ch(+) and HBD show a stronger interaction with water as water is added to the system. In the case of Glyceline, water has little effect on both hydroxyl proton diffusion of Ch(+) and HBD. In Reline, it is likely that water allows the formation of small amounts of ammonium hydroxide. The most surprising observation is from the self-diffusion of water, which is considerably higher that expected from a homogeneous liquid. This leads to the conclusion that Reline and Glyceline form mixtures that are inhomogeneous at a microscopic level despite the hydrophilicity of the salt and HBD. This work shows that PFG NMR is a powerful tool to elucidate both molecular dynamics and inter-molecular interactions in complex liquid mixtures, such as the aqueous DES mixtures.

12.
Phys Chem Chem Phys ; 17(45): 30481-91, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26513021

RESUMO

Aqueous liquid mixtures, in particular, those involving amphiphilic species, play an important role in many physical, chemical and biological processes. Of particular interest are alcohol/water mixtures; however, the structural dynamics of such systems are still not fully understood. Herein, a combination of terahertz time-domain spectroscopy (THz-TDS) and NMR relaxation time analysis has been applied to investigate 2-propanol/water mixtures across the entire composition range; while neutron diffraction studies have been carried out at two specific concentrations. Excellent agreement is seen between the techniques with a maximum in both the relative absorption coefficient and the activation energy to molecular motion occurring at ∼90 mol% H2O. Furthermore, this is the same value at which well-established excess thermodynamic functions exhibit a maximum/minimum. Additionally, both neutron diffraction and THz-TDS have been used to provide estimates of the size of the hydration shell around 2-propanol in solution. Both methods determine that between 4 and 5 H2O molecules per 2-propanol are found in the 2-propanol/water clusters at 90 mol% H2O. Based on the acquired data, a description of the structure of 2-propanol/water across the composition range is presented.

13.
Chemistry ; 20(40): 13009-15, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25146237

RESUMO

Nuclear magnetic resonance (NMR) relaxation times are shown to provide a unique probe of adsorbate-adsorbent interactions in liquid-saturated porous materials. A short theoretical analysis is presented, which shows that the ratio of the longitudinal to transverse relaxation times (T1/T2) is related to an adsorbate-adsorbent interaction energy, and we introduce a quantitative metric esurf (based on the relaxation time ratio) characterising the strength of this surface interaction. We then consider the interaction of water with a range of oxide surfaces (TiO2 anatase, TiO2 rutile, γ-Al2O3, SiO2, θ-Al2O3 and ZrO2) and show that esurf correlates with the strongest adsorption sites present, as determined by temperature programmed desorption (TPD). Thus we demonstrate that NMR relaxation measurements have a direct physical interpretation in terms of the characterisation of activation energy of desorption from the surface. Further, for a series of chemically similar solid materials, in this case a range of oxide materials, for which at least two calibration values are obtainable by TPD, the esurf parameter yields a direct estimate of the maximum activation energy of desorption from the surface. The results suggest that T1/T2 measurements may become a useful addition to the methods available to characterise liquid-phase adsorption in porous materials. The particular motivation for this work is to characterise adsorbate-surface interactions in liquid-phase catalysis.

14.
Chemistry ; 20(6): 1743-52, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24403184

RESUMO

The effect of ceria and zirconia grafting onto alumina (α and θ-δ phases) as supports for silicotungstic acid for the dehydration of glycerol to acrolein was studied. 30 % Silicotungstic acid (STA) supported on 5 % zirconia/δ,θ-alumina was the best catalyst, producing 85 % selectivity to acrolein at 100 % glycerol conversion, and it showed stable activity without using oxygen as a co-feed. The catalyst produced a STA of 90 g(acrolein) kg(cat)(-1) h(-1), which was greater than the STA simply supported on δ,θ-alumina, which only demonstrated 75 % selectivity towards acrolein. The effect of grafting on the support material was investigated by means of nitrogen adsorption, ammonia temperature-programmed desorption, thermogravimetric analysis, Raman spectroscopy, and powder X-ray diffraction. A pulsed-field gradient (PFG) NMR technique was also used to study diffusion processes associated with the catalysts. Diffusion studies of the grafted catalysts showed that zirconia contributes to the formation of more tortuous pathways within the pore structure, leading to the diminution of acid strength and making the catalyst less susceptible to coke formation.

15.
Mol Pharm ; 11(2): 630-7, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24344634

RESUMO

This article reports the application of in vitro multinuclear ((19)F and (1)H) two-dimensional magnetic resonance imaging (MRI) to study both dissolution media ingress and drug egress from a commercial Lescol XL extended release tablet in a United States Pharmacopeia Type IV (USP-IV) dissolution cell under pharmacopoeial conditions. Noninvasive spatial maps of tablet swelling and dissolution, as well as the mobilization and distribution of the drug are quantified and visualized. Two-dimensional active pharmaceutical ingredient (API) mobilization and distribution maps were obtained via (19)F MRI. (19)F API maps were coregistered with (1)H T2-relaxation time maps enabling the simultaneous visualization of drug distribution and gel layer dynamics within the swollen tablet. The behavior of the MRI data is also discussed in terms of its relationship to the UV drug release behavior.


Assuntos
Ácidos Graxos Monoinsaturados/química , Indóis/química , Imageamento por Ressonância Magnética , Preparações de Ação Retardada , Ácidos Graxos Monoinsaturados/metabolismo , Fluvastatina , Indóis/metabolismo , Comprimidos/química
16.
Angew Chem Int Ed Engl ; 53(49): 13330-40, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25348390

RESUMO

Mathematics has had a profound impact on science, providing a means to understand the world around us in unprecedented ways. With the advent of the digital age, the subject of information theory has grown hugely in importance. In particular, over the last two decades significant advances in our understanding of sampling and function reconstruction have culminated in the development of an idea known as compressed sensing. What seems like an abstract idea is now having a profound impact throughout the scientific world-from enabling high-resolution imaging of pediatric patients in clinical medicine through to advancing 3D electron tomography images of nanoparticle catalysts and NMR spectroscopy studies of proteins. In this Minireview, we summarize these applications and provide an outlook on how the principles of compressed sensing are leading to entirely new approaches to measurement throughout the physical and life sciences.

17.
Chemistry ; 19(35): 11725-32, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23873412

RESUMO

In recent work, it was reported that changes in solvent composition, precisely the addition of water, significantly inhibits the catalytic activity of Au/TiO2 catalyst in the aerobic oxidation of 1,4-butanediol in methanol due to changes in diffusion and adsorption properties of the reactant. In order to understand whether the inhibition mechanism of water on diol oxidation in methanol is generally valid, the solvent effect on the aerobic catalytic oxidation of 1,3-propanediol and its two methyl-substituted homologues, 2-methyl-1,3-propanediol and 2,2-dimethyl-1,3-propanediol, over a Au/TiO2 catalyst has been studied here using conventional catalytic reaction monitoring in combination with pulsed-field gradient nuclear magnetic resonance (PFG-NMR) diffusion and NMR relaxation time measurements. Diol conversion is significantly lower when water is present in the initial diol/methanol mixture. A reactivity trend within the group of diols was also observed. Combined NMR diffusion and relaxation time measurements suggest that molecular diffusion and, in particular, the relative strength of diol adsorption, are important factors in determining the conversion. These results highlight NMR diffusion and relaxation techniques as novel, non-invasive characterisation tools for catalytic materials, which complement conventional reaction data.

18.
J Am Chem Soc ; 134(28): 11312-5, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22694283

RESUMO

In-cell NMR spectroscopy offers a unique opportunity to begin to investigate the structures, dynamics, and interactions of molecules within their functional environments. An essential aspect of this technique is to define whether observed signals are attributable to intracellular species rather than to components of the extracellular medium. We report here the results of NMR measurements of the diffusion behavior of proteins expressed within bacterial cells, and find that these experiments provide a rapid and nondestructive probe of localization within cells and can be used to determine the size of the confining compartment. We show that diffusion can also be exploited as an editing method to eliminate extracellular species from high-resolution multidimensional spectra, and should be applicable to a wide range of problems. This approach is demonstrated here for a number of protein systems, using both (15)N and (13)C (methyl-TROSY) based acquisition.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Dobramento de Proteína
19.
Phys Rev Lett ; 108(26): 264505, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-23004990

RESUMO

Ultrafast magnetic resonance imaging, employing spiral reciprocal space sampling and compressed sensing image reconstruction, is used to acquire velocity maps of the liquid phase in gas-liquid multiphase flows. Velocity maps were acquired at a rate of 188 frames per second. The method enables quantitative characterization of the wake dynamics of single bubbles and bubble swarms. To illustrate this, we use the new technique to demonstrate the role of bubble wake vorticity in driving bubble secondary motions, and in governing the structure of turbulence in multiphase flows.

20.
Chemistry ; 18(45): 14426-33, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23008214

RESUMO

The effect of water on the catalytic oxidation of 1,4-butanediol in methanol over Au/TiO(2) has been investigated by catalytic reaction studies and NMR diffusion and relaxation studies. The addition of water to the dry catalytic system led to a decrease of both conversion and selectivity towards dimethyl succinate. Pulsed-field gradient (PFG)-NMR spectroscopy was used to assess the effect of water addition on the effective self-diffusivity of the reactant within the catalyst. NMR relaxation studies were also carried out to probe the strength of surface interaction of the reactant in the absence and presence of water. PFG-NMR studies revealed that the addition of water to the initial system, although increasing the dilution of the system, leads to a significant decrease of effective diffusion rate of the reactant within the catalyst. From T(1) and T(2) relaxation measurements it was possible to infer the strength of surface interaction of the reactant with the catalyst surface. The addition of water was found to inhibit the adsorption of the reactant over the catalyst surface, with the T(1)/T(2) ratio of 1,4-butanediol decreasing significantly when water was added. The results overall suggest that both the decrease of diffusion rate and adsorption strength of the reactant within the catalyst, due to water addition, limits the access of reactant molecules to the catalytic sites, which results in a decrease of reaction rate and conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA