Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nature ; 580(7801): 87-92, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238927

RESUMO

Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.


Assuntos
Sistemas de Identificação Animal , Organismos Aquáticos/fisiologia , Mudança Climática/estatística & dados numéricos , Conservação dos Recursos Naturais/métodos , Ecossistema , Oceanos e Mares , Comportamento Predatório , Animais , Regiões Antárticas , Biodiversidade , Aves , Peixes , Cadeia Alimentar , Camada de Gelo , Mamíferos , Dinâmica Populacional
2.
Glob Chang Biol ; 30(3): e17191, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433338

RESUMO

The response to climate change in highly dimorphic species can be hindered by differences between sexes in habitat preferences and movement patterns. The Antarctic fur seal, Arctocephalus gazella, is the most abundant pinniped in the Southern Hemisphere, and one of the main consumers of Antarctic krill, Euphausia superba, in the Southern Ocean. However, the populations breeding in the Atlantic Southern Ocean are decreasing, partly due to global warming. Male and female Antarctic fur seals differ greatly in body size and foraging ecology, and little is known about their sex-specific responses to climate change. We used satellite tracking data and Earth System Models to predict changes in habitat suitability for male and female Antarctic fur seals from the Western Antarctic Peninsula under different climate change scenarios. Under the most extreme scenario (SSP5-8.5; global average temperature +4.4°C projected by 2100), suitable habitat patches will shift southward during the non-breeding season, leading to a minor overall habitat loss. The impact will be more pronounced for females than for males. The reduction of winter foraging grounds might decrease the survival of post-weaned females, reducing recruitment and jeopardizing population viability. During the breeding season, when males fast on land, suitable foraging grounds for females off the South Shetland Islands will remain largely unmodified, and new ones will emerge in the Bellingshausen Sea. As Antarctic fur seals are income breeders, the foraging grounds of females should be reasonably close to the breeding colony. As a result, the new suitable foraging grounds will be useful for females only if nearby beaches currently covered by sea ice emerge by the end of the century. Furthermore, the colonization of these new, ice-free breeding locations might be limited by strong female philopatry. These results should be considered when managing the fisheries of Antarctic krill in the Southern Ocean.


La resposta al canvi climàtic en espècies amb dimorfisme sexual pot veure's dificultada per les diferències entre sexes respecte a les seves preferències d'ús de l'hàbitat i els seus patrons de moviment. L'os marí antàrtic (Arctocephalus gazella), és el pinnípede més abundant a l'Hemisferi Sud i un dels principals consumidors de krill antàrtic, (Euphausia superba), a l'Oceà Antàrtic. No obstant això, les poblacions que es reprodueixen al sector Atlàntic de l'Oceà Antàrtic estan disminuint, en part a causa de l'escalfament global. Els mascles i les femelles de l'os marí antàrtic difereixen considerablement en la seva mida corporal i ecologia tròfica, i es té poc coneixement sobre les seves respostes específiques al canvi climàtic. En aquest estudi hem utilitzat dades de seguiment per satèl·lit i models del Sistema Terrestre per predir els canvis en la idoneïtat de l'hàbitat per als mascles i les femelles d'os marí antàrtic de la Península Antàrtica Occidental sota diferents escenaris de canvi climàtic. Sota l'escenari més extrem (SSP5-8.5; temperatura mitjana mundial +4.4°C prevista per a 2100), les zones d'hàbitat idoni es desplaçaran cap al sud durant l'època d'hivernada (no reproducció), provocant una lleugera pèrdua d'hàbitat idoni. Tot i això, l'impacte serà més pronunciat per a les femelles que per als mascles. Aquesta reducció dels territoris d'alimentació durant l'hivern podria disminuir la supervivència de les femelles postdeslletades, reduint-ne el reclutament i posant en perill la viabilitat de la població. Durant l'època de cria, quan els mascles es troben majoritàriament en dejú a terra, els territoris d'alimentació idonis per a les femelles al voltant de les Illes Shetland del Sud romandran en gran part sense modificar-se, i n'emergiran de nous al mar de Bellingshausen. Com que les femelles d'os marí antàrtic es continuen alimentant durant la cria, els territoris d'alimentació de les femelles han d'estar raonablement a prop de la colònia de cria. Com a resultat, aquestes noves zones d'alimentació seran útils només si les platges properes, actualment cobertes de gel marí, emergeixen al llarg del segle. A més, la colonització d'aquests nous llocs de reproducció lliures de gel podria veure's limitada per la forta filopatria de les femelles. Aquests resultats haurien de tenir-se en compte en la gestió de les pesqueries de krill a l'Oceà Antàrtic.


Assuntos
Otárias , Feminino , Masculino , Animais , Regiões Antárticas , Oceano Atlântico , Tamanho Corporal , Mudança Climática
3.
BMC Bioinformatics ; 24(1): 366, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770830

RESUMO

We consider the problem of finding an accurate representation of neuron shapes, extracting sub-cellular features, and classifying neurons based on neuron shapes. In neuroscience research, the skeleton representation is often used as a compact and abstract representation of neuron shapes. However, existing methods are limited to getting and analyzing "curve" skeletons which can only be applied for tubular shapes. This paper presents a 3D neuron morphology analysis method for more general and complex neuron shapes. First, we introduce the concept of skeleton mesh to represent general neuron shapes and propose a novel method for computing mesh representations from 3D surface point clouds. A skeleton graph is then obtained from skeleton mesh and is used to extract sub-cellular features. Finally, an unsupervised learning method is used to embed the skeleton graph for neuron classification. Extensive experiment results are provided and demonstrate the robustness of our method to analyze neuron morphology.


Assuntos
Algoritmos , Imageamento Tridimensional , Imageamento Tridimensional/métodos , Neurônios
4.
BMC Ecol ; 20(1): 32, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493329

RESUMO

BACKGROUND: Resolving the preferred prey items and dietary proportions of leopard seals is central to understanding food-web dynamics in the rapidly-warming Antarctic Peninsula region. Previous studies have identified a wide range of prey items; however, due to anecdotal or otherwise limited information, leopard seal diets remain unresolved by seal sex, individual, body size, region, and season. Over the 2013, 2014, and 2017 field seasons we collected scat, tissue samples (red blood cells and plasma; n = 23) for stable isotope analyses, and previously-reported animal-borne video from 19 adult leopard seals foraging near mesopredator breeding colonies at Cape Shirreff, Livingston Island. We summarized a priori diet information from scat and video analysis and applied a three-isotope (δ13C, δ15N, δ34S), four-source (fish, fur seal, krill, penguin) Bayesian mixing model to examine temporal variability in both prey sources and leopard seal tissues. RESULTS: The austral spring diets of males and females focused on Antarctic krill (31.7-38.0%), notothen fish (31.6-36.5%), and penguin (24.4-26.9%) and were consistent across all 3 years. Several lines of evidence suggest the transition to summer foraging was distinct for males and females. Female diets transitioned rapidly to higher δ15N values (+2.1‰), indicating increased consumption of penguin (29.5-46.2%) and energy-dense Antarctic fur seal pup (21.3-37.6%). CONCLUSIONS: The seasonal increase in leopard seal δ15N values, and thus fur seal in their diet, was predictably related to larger body size; it may also be forcing reductions to the largest Antarctic fur seal colony in the Antarctic Peninsula. Our ensemble sampling approach reduces historical biases in monitoring marine apex predator diets. Further, our results are necessary to best inform regional fisheries management planning.


Assuntos
Dieta , Focas Verdadeiras , Animais , Regiões Antárticas , Teorema de Bayes , Tamanho Corporal , Clima Frio , Feminino , Masculino , Comportamento Predatório , Estações do Ano
5.
Virus Genes ; 54(5): 719-723, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29971737

RESUMO

Viral diversity associated with Antarctic wildlife remains poorly studied. Nonetheless, over the past 5 years, there has been a concerted effort using viral metagenomics approaches to identify and characterize viruses associated with Antarctic pinniped and avian species. Here we used a viral metagenomics approach to identify circular DNA viruses in buccal swab samples from Antarctic fur seals (Arctocephalus gazella) breeding on Livingston Island, Antarctica during the 2016/2017 field season. We identified two new lineages of anelloviruses, torque teno Arctocephalus gazella virus (TTAgV)-1 (2083 nts) and -2 (2127-2143 nts), which are most closely related to and cluster with a previously identified anellovirus associated with California sea lions (Zalophus californianus) sharing ~ 60% genome-wide pairwise identity. The ORF1 of TTAgVs share 26-41% amino acid similarity to the ORF1 of other previously identified pinniped-associated anelloviruses.


Assuntos
Anelloviridae/isolamento & purificação , Otárias/virologia , Anelloviridae/genética , Animais , Genoma Viral , Mucosa Bucal/virologia
6.
Virology ; 594: 110064, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38522135

RESUMO

Papillomaviruses (family Papillomaviridae) are non-enveloped, circular, double-stranded DNA viruses known to infect squamous and mucosal epithelial cells. In the family Papillomaviridae there are 53 genera and 133 viral species whose members infect a variety of mammalian, avian, reptilian, and fish species. Within the Antarctic context, papillomaviruses (PVs) have been identified in Adélie penguins (Pygoscelis adeliae, 2 PVs), Weddell seals (Leptonychotes weddellii, 7 PVs), and emerald notothen (Trematomus bernacchii, 1 PV) in McMurdo Sound and Ross Island in eastern Antarctica. Here we identified 13 diverse PVs from buccal swabs of Antarctic fur seals (Arctocephalus gazella, 2 PVs) and leopard seal (Hydrurga leptonyx, 3 PVs) in western Antarctica (Antarctic Peninsula), and vaginal and nasal swabs of Weddell seals (8 PVs) in McMurdo Sound. These PV genomes group into four genera representing 11 new papillomavirus types, of which five are from two Antarctic fur seals and a leopard seal and six from Weddell seals.


Assuntos
Otárias , Focas Verdadeiras , Animais , Feminino , Regiões Antárticas , Aves , Papillomaviridae/genética
7.
J Anim Ecol ; 82(4): 903-11, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23444975

RESUMO

Two major drivers in population dynamics are bottom-up processes, such as environmental factors that affect foraging success, and the top-down impacts of predation. Many populations of marine mammal and seabird species appear to be declining in response to reductions in prey associated with the bottom-up effects of climate change. However, predation, which usually occurs at sea and is difficult to observe, may also play a key role. We analysed drivers of population dynamics of Antarctic fur seals Arctocephalus gazella at Cape Shirreff from 1997 to 2009, including a predator that targets pre-weaned pups and bottom-up environmental effects in an ecosystem particularly sensitive to small changes in temperature. We use Bayesian mark-recapture analysis to demonstrate that although large-scale environmental variability affects annual adult survival and reproduction, first year survival appears to be driving the current decline in this population (as defined by a decline in the annual number of pups born). Although the number of pups increased during the first third of the study, first year survival and recruitment of those pups in later years was very low. Such low survival may be driven by leopard seal Hydrurga leptonyx predation, particularly prior to weaning. Our results suggest that without leopard seal predation, this population would most likely increase in size, despite the observed bottom-up effects of climate changes on adult vital rates. More broadly, our results show how age-targeted predation could be a major factor in population decline of K-selected colonial breeders.


Assuntos
Otárias/fisiologia , Animais , Regiões Antárticas , Mudança Climática , Ecossistema , Dinâmica Populacional , Comportamento Predatório , Focas Verdadeiras/fisiologia
8.
Environ Sci Technol ; 47(22): 12744-52, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24138491

RESUMO

Persistent organic pollutants (POPs), contaminants that may bioaccumulate in upper trophic level organisms, were detected in the milk of a top predator, the Antarctic fur seal (Arctocephalus gazella). Multiparous females had significantly lower concentrations of certain POPs (trans-nonachlor, p,p'-DDE, and several PCBs) in their milk than primiparous females, likely due to the annual lactational transfer of the POP burden from mother to pup. Furthermore, there were significant interannual differences in POP concentrations in multiparous females' milk from five breeding seasons between 2000 and 2011. Decreasing trends in concentrations of certain POPs over the recent decade coincide with declining global emissions, yet atmospheric concentrations in the Antarctic are not always consistent with global trends, suggesting that additional factors may contribute to temporal trends of POPs in fur seals. Climate shifts and corresponding availability of krill over the past decade were not consistent with trends observed in POP concentrations in fur seal milk, suggesting that climate may not be a key factor. Additional mechanisms, such as variability in the geographic ranges of individual seals during overwintering migrations are discussed and should be explored further.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Otárias/metabolismo , Compostos Orgânicos/análise , Comportamento Predatório , Estações do Ano , Animais , Regiões Antárticas , Feminino , Humanos , Leite/química , Paridade , Praguicidas/análise , Bifenilos Policlorados/análise , Gravidez , Fatores de Tempo
9.
J Clin Ultrasound ; 41(4): 210-3, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23233358

RESUMO

PURPOSE: Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) allows sampling of abdominal adenopathy easily and safely from locations that were previously deemed too risky and inaccessible. The efficacy of EUS-FNA in a large cohort of patients with abdominal adenopathy has not been previously described in the literature. METHODS: We conducted a large retrospective study at a tertiary referral center. Two hundred twenty-five consecutive patients undergoing EUS-FNA for only abdominal adenopathy between 2004 through August 2009 were included in our study. Patient demographics, indications, EUS findings, and final cytologic diagnoses were recorded. RESULTS: A total of 230 lymph nodes were biopsied in 225 patients. Common locations of nodes included peripancreatic (19%), porta hepatis (18%), and celiac axis (18%). Adequate specimens were obtained in 200/230 nodes (87%) and the most common diagnoses based on cytology were: benign/reactive (50%), adenocarcinoma (20%), lymphoma (8%). The sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy were 71%, 99%, 99%, 78%, and 85%, respectively, for EUS-FNA. Based on EUS imaging alone, malignant nodes were more likely to be larger in diameter (17 mm versus 26 mm, p < 0.001), have a round shape (p = 0.002), well-defined borders (p = 0.04), and hypoechic echotexture (p < 0.001). CONCLUSIONS: EUS-FNA allows for excellent tissue acquisition in abdominal lymphadenopathy. Our study supports the use of traditional EUS imaging criteria to identify suspected malignant adenopathy. The results from our large cohort of patients show that EUS-FNA should be considered as a first-line diagnostic modality for ascertaining the etiology of abdominal lymphadenopathy.


Assuntos
Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Linfonodos/patologia , Doenças Linfáticas/patologia , Abdome , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Linfonodos/diagnóstico por imagem , Doenças Linfáticas/diagnóstico por imagem , Doenças Linfáticas/etiologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
10.
Res Sq ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37215037

RESUMO

We consider the problem of finding an accurate representation of neuron shapes, extracting sub-cellular features, and classifying neurons based on neuron shapes. In neuroscience research, the skeleton representation is often used as a compact and abstract representation of neuron shapes. However, existing methods are limited to getting and analyzing"curve"skeletons which can only be applied for tubular shapes. This paper presents a 3D neuron morphology analysis method for more general and complex neuron shapes. First, we introduce the concept of skeleton mesh to represent general neuron shapes and propose a novel method for computing mesh representations from 3D surface point clouds. A skeleton graph is then obtained from skeleton mesh and is used to extract sub-cellular features. Finally, an unsupervised learning method is used to embed the skeleton graph for neuron classification. Extensive experiment results are provided and demonstrate the robustness of our method to analyze neuron morphology.

11.
Sci Rep ; 13(1): 3483, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859457

RESUMO

This paper presents a method for time-lapse 3D cell analysis. Specifically, we consider the problem of accurately localizing and quantitatively analyzing sub-cellular features, and for tracking individual cells from time-lapse 3D confocal cell image stacks. The heterogeneity of cells and the volume of multi-dimensional images presents a major challenge for fully automated analysis of morphogenesis and development of cells. This paper is motivated by the pavement cell growth process, and building a quantitative morphogenesis model. We propose a deep feature based segmentation method to accurately detect and label each cell region. An adjacency graph based method is used to extract sub-cellular features of the segmented cells. Finally, the robust graph based tracking algorithm using multiple cell features is proposed for associating cells at different time instances. We also demonstrate the generality of our tracking method on C. elegans fluorescent nuclei imagery. Extensive experiment results are provided and demonstrate the robustness of the proposed method. The code is available on GitHub and the method is available as a service through the BisQue portal.


Assuntos
Algoritmos , Caenorhabditis elegans , Animais , Imagem com Lapso de Tempo , Núcleo Celular , Corantes
12.
PLoS One ; 18(8): e0284640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37566609

RESUMO

Leopard seals (Hydrurga leptonyx) are top predators that can exert substantial top-down control of their Antarctic prey species. However, population trends and genetic diversity of leopard seals remain understudied, limiting our understanding of their ecological role. We investigated the genetic diversity, effective population size and demographic history of leopard seals to provide fundamental data that contextualizes their predatory influence on Antarctic ecosystems. Ninety leopard seals were sampled from the northern Antarctic Peninsula during the austral summers of 2008-2019 and a 405bp segment of the mitochondrial control region was sequenced for each individual. We uncovered moderate levels of nucleotide (π = 0.013) and haplotype (Hd = 0.96) diversity, and the effective population size was estimated at around 24,000 individuals (NE = 24,376; 95% CI: 16,876-33,126). Consistent with findings from other ice-breeding pinnipeds, Bayesian skyline analysis also revealed evidence for population expansion during the last glacial maximum, suggesting that historical population growth may have been boosted by an increase in the abundance of sea ice. Although leopard seals can be found in warmer, sub-Antarctic locations, the species' core habitat is centered on the Antarctic, making it inherently vulnerable to the loss of sea ice habitat due to climate change. Therefore, detailed assessments of past and present leopard seal population trends are needed to inform policies for Antarctic ecosystems.


Assuntos
Caniformia , Focas Verdadeiras , Animais , Ecossistema , Teorema de Bayes , Caniformia/genética , Focas Verdadeiras/genética , Regiões Antárticas , Crescimento Demográfico , Variação Genética , Oceanos e Mares
14.
Sci Total Environ ; 854: 158651, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096211

RESUMO

In an era of rapid environmental change and increasing human presence, researchers need efficient tools for tracking contaminants to monitor the health of Antarctic flora and fauna. Here, we examined the utility of leopard seal whiskers as a biomonitoring tool that reconstructs time-series of significant ecological and physiological biomarkers. Leopard seals (Hydrurga leptonyx) are a sentinel species in the Western Antarctic Peninsula due to their apex predator status and top-down effects on several Antarctic species. However, there are few data on their contaminant loads. We analyzed leopard seal whiskers (n = 18 individuals, n = 981 segments) collected during 2018-2019 field seasons to acquire longitudinal profiles of non-essential (Hg, Pb, and Cd) and essential (Se, Cu, and Zn) trace elements, stable isotope (ẟ15N and ẟ13C) values and to assess Hg risk with Se:Hg molar ratios. Whiskers provided between 46 and 286 cumulative days of growth with a mean ~ 125 days per whisker (n = 18). Adult whiskers showed variability in non-essential trace elements over time that could partly be explained by changes in diet. Whisker Hg levels were insufficient (<20 ppm) to consider most seals being at "high" risk for Hg toxicity. Nevertheless, maximum Hg concentrations observed in this study were greater than that of leopard seal hair measured two decades ago. However, variation in the Se:Hg molar ratios over time suggest that Se may detoxify Hg burden in leopard seals. Overall, we provide evidence that the analysis of leopard seal whiskers allows for the reconstruction of time-series ecological and physiological data and can be valuable for opportunistically monitoring the health of the leopard seal population and their Antarctic ecosystem during climate change.


Assuntos
Mercúrio , Focas Verdadeiras , Oligoelementos , Animais , Regiões Antárticas , Ecossistema , Isótopos/análise , Mercúrio/análise , Oligoelementos/análise , Vibrissas/química
15.
Biol Imaging ; 2: e6, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38486830

RESUMO

This paper presents a deep-learning-based workflow to detect synapses and predict their neurotransmitter type in the primitive chordate Ciona intestinalis (Ciona) electron microscopic (EM) images. Identifying synapses from EM images to build a full map of connections between neurons is a labor-intensive process and requires significant domain expertise. Automation of synapse classification would hasten the generation and analysis of connectomes. Furthermore, inferences concerning neuron type and function from synapse features are in many cases difficult to make. Finding the connection between synapse structure and function is an important step in fully understanding a connectome. Class Activation Maps derived from the convolutional neural network provide insights on important features of synapses based on cell type and function. The main contribution of this work is in the differentiation of synapses by neurotransmitter type through the structural information in their EM images. This enables the prediction of neurotransmitter types for neurons in Ciona, which were previously unknown. The prediction model with code is available on GitHub.

16.
Mol Ecol Resour ; 21(7): 2455-2470, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34097816

RESUMO

With the advent of chromatin-interaction maps, chromosome-level genome assemblies have become a reality for a wide range of organisms. Scaffolding quality is, however, difficult to judge. To explore this gap, we generated multiple chromosome-scale genome assemblies of an emerging wild animal model for carcinogenesis, the California sea lion (Zalophus californianus). Short-read assemblies were scaffolded with two independent chromatin interaction mapping data sets (Hi-C and Chicago), and long-read assemblies with three data types (Hi-C, optical maps and 10X linked reads) following the "Vertebrate Genomes Project (VGP)" pipeline. In both approaches, 18 major scaffolds recovered the karyotype (2n = 36), with scaffold N50s of 138 and 147 Mb, respectively. Synteny relationships at the chromosome level with other pinniped genomes (2n = 32-36), ferret (2n = 34), red panda (2n = 36) and domestic dog (2n = 78) were consistent across approaches and recovered known fissions and fusions. Comparative chromosome painting and multicolour chromosome tiling with a panel of 264 genome-integrated single-locus canine bacterial artificial chromosome probes provided independent evaluation of genome organization. Broad-scale discrepancies between the approaches were observed within chromosomes, most commonly in translocations centred around centromeres and telomeres, which were better resolved in the VGP assembly. Genomic and cytological approaches agreed on near-perfect synteny of the X chromosome, and in combination allowed detailed investigation of autosomal rearrangements between dog and sea lion. This study presents high-quality genomes of an emerging cancer model and highlights that even highly fragmented short-read assemblies scaffolded with Hi-C can yield reliable chromosome-level scaffolds suitable for comparative genomic analyses.


Assuntos
Leões-Marinhos , Animais , Cães , Furões , Genoma , Leões-Marinhos/genética , Sintenia , Cromossomo X
17.
SLAS Discov ; 25(8): 950-956, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32081066

RESUMO

Adequate characterization of chemical entities made for biological screening in the drug discovery context is critical. Incorrectly characterized structures lead to mistakes in the interpretation of structure-activity relationships and confuse an already multidimensional optimization problem. Mistakes in the later use of these compounds waste money and valuable resources in a discovery process already under cost pressure. Left unidentified, these errors lead to problems in project data packages during quality review. At worst, they put intellectual property and patent integrity at risk. We describe a KNIME workflow for the early and automated identification of these errors during registration of a new chemical entity into the corporate screening catalog. This Automated Structure Verification workflow provides early identification (within 24 hours) of missing or inconsistent analytical data and therefore reduces any mistakes that inevitably get made. Automated identification removes the burden of work from the chemist submitting the compound into the registration system. No additional work is required unless a problem is identified and the submitter alerted. Before implementation, 14% of samples within the existing sample catalog were missing data on initial pass. A year after implementation, only 0.2% were missing data.


Assuntos
Descoberta de Drogas , Software , Relação Estrutura-Atividade , Automação/métodos , Humanos , Fluxo de Trabalho
18.
19.
Sci Rep ; 10(1): 5089, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198403

RESUMO

Understanding the effects of human exploitation on the genetic composition of wild populations is important for predicting species persistence and adaptive potential. We therefore investigated the genetic legacy of large-scale commercial harvesting by reconstructing, on a global scale, the recent demographic history of the Antarctic fur seal (Arctocephalus gazella), a species that was hunted to the brink of extinction by 18th and 19th century sealers. Molecular genetic data from over 2,000 individuals sampled from all eight major breeding locations across the species' circumpolar geographic distribution, show that at least four relict populations around Antarctica survived commercial hunting. Coalescent simulations suggest that all of these populations experienced severe bottlenecks down to effective population sizes of around 150-200. Nevertheless, comparably high levels of neutral genetic variability were retained as these declines are unlikely to have been strong enough to deplete allelic richness by more than around 15%. These findings suggest that even dramatic short-term declines need not necessarily result in major losses of diversity, and explain the apparent contradiction between the high genetic diversity of this species and its extreme exploitation history.


Assuntos
Espécies em Perigo de Extinção/estatística & dados numéricos , Otárias/classificação , Otárias/genética , Variação Genética/genética , Animais , Regiões Antárticas , Cruzamento , Otárias/fisiologia , Genética Populacional , Repetições de Microssatélites/genética , Densidade Demográfica
20.
Conserv Physiol ; 7(1): coz103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31890212

RESUMO

Quantifying metabolic rates and the factors that influence them is key to wildlife conservation efforts because anthropogenic activities and habitat alteration can disrupt energy balance, which is critical for reproduction and survival. We investigated the effect of diving behaviour, diet and season on field metabolic rates (FMR) and foraging success of lactating northern fur seals (Callorhinus ursinus) from the Pribilof Islands during a period of population decline. Variation in at-sea FMR was in part explained by season and trip duration, with values that ranged from 5.18 to 9.68 W kg-1 (n = 48). Fur seals experienced a 7.2% increase in at-sea FMR from summer to fall and a 1.9% decrease in at-sea FMR for each additional day spent at sea. There was no effect of foraging effort, dive depth or diet on at-sea FMR. Mass gains increased with trip duration and were greater in the fall compared with summer, but were unrelated to at-sea FMR, diving behaviour and diet. Seasonal increases in at-sea FMR may have been due to costs associated with the annual molt but did not appear to adversely impact the ability of females to gain mass on foraging trips. The overall high metabolic rates in conjunction with the lack of any diet-related effects on at-sea FMR suggests that northern fur seals may have reached a metabolic ceiling early in the population decline. This provides indirect evidence that food limitation may be contributing to the low pup growth rates observed in the Pribilof Islands, as a high metabolic overhead likely results in less available energy for lactation. The limited ability of female fur seals to cope with changes in prey availability through physiological mechanisms is particularly concerning given the recent and unprecedented environmental changes in the Bering Sea that are predicted to have ecosystem-level impacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA