Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Am Soc Nephrol ; 35(2): 135-148, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38044490

RESUMO

SIGNIFICANCE STATEMENT: In this study, we demonstrate that a common, low-cost compound known as octanedioic acid (DC 8 ) can protect mice from kidney damage typically caused by ischemia-reperfusion injury or the chemotherapy drug cisplatin. This compound seems to enhance peroxisomal activity, which is responsible for breaking down fats, without adversely affecting mitochondrial function. DC 8 is not only affordable and easy to administer but also effective. These encouraging findings suggest that DC 8 could potentially be used to assist patients who are at risk of experiencing this type of kidney damage. BACKGROUND: Proximal tubules are rich in peroxisomes, which are damaged during AKI. Previous studies demonstrated that increasing peroxisomal fatty acid oxidation (FAO) is renoprotective, but no therapy has emerged to leverage this mechanism. METHODS: Mice were fed with either a control diet or a diet enriched with dicarboxylic acids, which are peroxisome-specific FAO substrates, then subjected to either ischemia-reperfusion injury-AKI or cisplatin-AKI models. Biochemical, histologic, genetic, and proteomic analyses were performed. RESULTS: Both octanedioic acid (DC 8 ) and dodecanedioic acid (DC 12 ) prevented the rise of AKI markers in mice that were exposed to renal injury. Proteomics analysis demonstrated that DC 8 preserved the peroxisomal and mitochondrial proteomes while inducing extensive remodeling of the lysine succinylome. This latter finding indicates that DC 8 is chain shortened to the anaplerotic substrate succinate and that peroxisomal FAO was increased by DC 8 . CONCLUSIONS: DC 8 supplementation protects kidney mitochondria and peroxisomes and increases peroxisomal FAO, thereby protecting against AKI.


Assuntos
Injúria Renal Aguda , Ácidos Dicarboxílicos , Suplementos Nutricionais , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Cisplatino , Ácidos Dicarboxílicos/administração & dosagem , Ácidos Graxos , Proteômica , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia
2.
Proteomics ; 24(5): e2300162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37775337

RESUMO

Acute kidney injury (AKI) manifests as a major health concern, particularly for the elderly. Understanding AKI-related proteome changes is critical for prevention and development of novel therapeutics to recover kidney function and to mitigate the susceptibility for recurrent AKI or development of chronic kidney disease. In this study, mouse kidneys were subjected to ischemia-reperfusion injury, and the contralateral kidneys remained uninjured to enable comparison and assess injury-induced changes in the kidney proteome. A ZenoTOF 7600 mass spectrometer was optimized for data-independent acquisition (DIA) to achieve comprehensive protein identification and quantification. Short microflow gradients and the generation of a deep kidney-specific spectral library allowed for high-throughput, comprehensive protein quantification. Upon AKI, the kidney proteome was completely remodeled, and over half of the 3945 quantified protein groups changed significantly. Downregulated proteins in the injured kidney were involved in energy production, including numerous peroxisomal matrix proteins that function in fatty acid oxidation, such as ACOX1, CAT, EHHADH, ACOT4, ACOT8, and Scp2. Injured kidneys exhibited severely damaged tissues and injury markers. The comprehensive and sensitive kidney-specific DIA-MS assays feature high-throughput analytical capabilities to achieve deep coverage of the kidney proteome, and will serve as useful tools for developing novel therapeutics to remediate kidney function.


Assuntos
Injúria Renal Aguda , Proteômica , Humanos , Camundongos , Animais , Idoso , Proteoma , Regulação para Baixo , Rim
3.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628798

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths globally. Incidence rates are steadily increasing, creating an unmet need for new therapeutic options. Recently, the inhibition of sirtuin-2 (Sirt2) was proposed as a potential treatment for HCC, despite contradictory findings of its role as both a tumor promoter and suppressor in vitro. Sirt2 functions as a lysine deacetylase enzyme. However, little is known about its biological influence, despite its implication in several age-related diseases. This study evaluated Sirt2's role in HCC in vivo using an inducible c-MYC transgene in Sirt2+/+ and Sirt2-/- mice. Sirt2-/- HCC mice had smaller, less proliferative, and more differentiated liver tumors, suggesting that Sirt2 functions as a tumor promoter in this context. Furthermore, Sirt2-/- HCCs had significantly less c-MYC oncoprotein and reduction in c-MYC nuclear localization. The RNA-seq showed that only three genes were significantly dysregulated due to loss of Sirt2, suggesting the underlying mechanism is due to Sirt2-mediated changes in the acetylome, and that the therapeutic inhibition of Sirt2 would not perturb the oncogenic transcriptome. The findings of this study suggest that Sirt2 inhibition could be a promising molecular target for slowing HCC growth.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Camundongos Transgênicos , Carcinoma Hepatocelular/genética , Sirtuína 2/genética , Neoplasias Hepáticas/genética , Carcinógenos , Modelos Animais de Doenças
4.
J Biol Chem ; 296: 100283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33450224

RESUMO

Metabolic reprogramming provides transformed cells with proliferative and/or survival advantages. Capitalizing on this therapeutically, however, has been only moderately successful because of the relatively small magnitude of these differences and because cancers may further adapt their metabolism to evade metabolic pathway inhibition. Mice lacking the peroxisomal bifunctional enzyme enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase (Ehhadh) and supplemented with the 12-carbon fatty acid lauric acid (C12) accumulate the toxic metabolite dodecanedioic acid (DDDA), which causes acute hepatocyte necrosis and liver failure. We noted that, in a murine model of pediatric hepatoblastoma (HB) and in primary human HBs, downregulation of Ehhadh occurs in association with the suppression of mitochondrial ß- and endosomal/peroxisomal ω-fatty acid oxidation pathways. This suggested that HBs might be more susceptible than normal liver tissue to C12 dietary intervention. Indeed, HB-bearing mice provided with C12- and/or DDDA-supplemented diets survived significantly longer than those on standard diets. In addition, larger tumors developed massive necrosis following short-term DDDA administration. In some HBs, the eventual development of DDDA resistance was associated with 129 transcript differences, ∼90% of which were downregulated, and approximately two-thirds of which correlated with survival in numerous human cancers. These transcripts often encoded extracellular matrix components, suggesting that DDDA resistance arises from reduced Ehhadh uptake. Lower Ehhadh expression was also noted in murine hepatocellular carcinomas and in subsets of certain human cancers, supporting the likely generality of these results. Our results demonstrate the feasibility of C12 or DDDA dietary supplementation that is nontoxic, inexpensive, and likely compatible with more standard chemotherapies.


Assuntos
Ácidos Graxos/metabolismo , Hepatoblastoma/metabolismo , Neoplasias Hepáticas/metabolismo , Enzima Bifuncional do Peroxissomo/genética , Animais , Ácidos Dicarboxílicos/efeitos adversos , Ácidos Dicarboxílicos/farmacologia , Ácidos Graxos/genética , Hepatoblastoma/genética , Hepatoblastoma/patologia , Humanos , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metabolismo/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Peroxissomos/genética , Peroxissomos/metabolismo
5.
Mol Genet Metab ; 137(4): 342-348, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36335793

RESUMO

GM3 synthase (GM3S) deficiency is a rare neurodevelopmental disorder caused by an inability to synthesize gangliosides, for which there is currently no treatment. Gangliosides are brain-enriched, plasma membrane glycosphingolipids with poorly understood biological functions related to cell adhesion, growth, and receptor-mediated signal transduction. Here, we investigated the effects of GM3S deficiency on metabolism and mitochondrial function in a mouse model. By indirect calorimetry, GM3S knockout mice exhibited increased whole-body respiration and an increased reliance upon carbohydrate as an energy source. 18F-FDG PET confirmed higher brain glucose uptake in knockout mice, and GM3S deficient N41 neuronal cells showed higher glucose utilization in vitro. Brain mitochondria from knockout mice respired at a higher rate on Complex I substrates including pyruvate. This appeared to be due to higher expression of pyruvate dehydrogenase (PDH) and lower phosphorylation of PDH, which would favor pyruvate entry into the mitochondrial TCA cycle. Finally, it was observed that blocking glucose metabolism with the glycolysis inhibitor 2-deoxyglucose reduced seizure intensity in GM3S knockout mice following administration of kainate. In conclusion, GM3S deficiency may be associated with a hypermetabolic phenotype that could promote seizure activity.


Assuntos
Glucose , Sialiltransferases , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Gangliosídeo G(M3)/metabolismo , Glucose/metabolismo , Camundongos Knockout , Ácido Pirúvico , Convulsões/genética , Sialiltransferases/genética , Sialiltransferases/metabolismo
6.
J Lipid Res ; 62: 100069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33757734

RESUMO

Long-chain fatty acid oxidation is frequently impaired in primary and systemic metabolic diseases affecting the heart; thus, therapeutically increasing reliance on normally minor energetic substrates, such as ketones and medium-chain fatty acids, could benefit cardiac health. However, the molecular fundamentals of this therapy are not fully known. Here, we explored the ability of octanoate, an eight-carbon medium-chain fatty acid known as an unregulated mitochondrial energetic substrate, to ameliorate cardiac hypertrophy in long-chain fatty acid oxidation-deficient hearts because of carnitine palmitoyltransferase 2 deletion (Cpt2M-/-). CPT2 converts acylcarnitines to acyl-CoAs in the mitochondrial matrix for oxidative bioenergetic metabolism. In Cpt2M-/- mice, high octanoate-ketogenic diet failed to alleviate myocardial hypertrophy, dysfunction, and acylcarnitine accumulation suggesting that this alternative substrate is not sufficiently compensatory for energy provision. Aligning this outcome, we identified a major metabolic distinction between muscles and liver, wherein heart and skeletal muscle mitochondria were unable to oxidize free octanoate, but liver was able to oxidize free octanoate. Liver mitochondria, but not heart or muscle, highly expressed medium-chain acyl-CoA synthetases, potentially enabling octanoate activation for oxidation and circumventing acylcarnitine shuttling. Conversely, octanoylcarnitine was oxidized by liver, skeletal muscle, and heart, with rates in heart 4-fold greater than liver and, in muscles, was not dependent upon CPT2. Together, these data suggest that dietary octanoate cannot rescue CPT2-deficient cardiac disease. These data also suggest the existence of tissue-specific mechanisms for octanoate oxidative metabolism, with liver being independent of free carnitine availability, whereas cardiac and skeletal muscles depend on carnitine but not on CPT2.


Assuntos
Carnitina O-Palmitoiltransferase/deficiência , Erros Inatos do Metabolismo
7.
Mol Genet Metab ; 132(3): 173-179, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33602601

RESUMO

Osteopenia occurs in a subset of phenylalanine hydroxylase (PAH) deficient phenylketonuria (PKU) patients. While osteopenia is not fully penetrant in patients, the Pahenu2 classical PKU mouse is universally osteopenic, making it an ideal model of the phenotype. Pahenu2 Phe management, with a Phe-fee amino acid defined diet, does not improve bone density as histomorphometry metrics remain indistinguishable from untreated animals. Previously, we demonstrated Pahenu2 mesenchymal stem cells (MSCs) display impaired osteoblast differentiation. Oxidative stress is recognized in PKU patients and PKU animal models. Pahenu2 MSCs experience oxidative stress determined by intracellular superoxide over-representation. The deleterious impact of oxidative stress on mitochondria is recognized. Oximetry applied to Pahenu2 MSCs identified mitochondrial stress by increased basal respiration with concurrently reduced maximal respiration and respiratory reserve. Proton leak secondary to mitochondrial complex 1 dysfunction is a recognized superoxide source. Respirometry applied to Pahenu2 MSCs, in the course of osteoblast differentiation, identified a partial complex 1 deficit. Pahenu2 MSCs treated with the antioxidant resveratrol demonstrated increased mitochondrial mass by MitoTracker green labeling. In hyperphenylalaninemic conditions, resveratrol increased in situ alkaline phosphatase activity suggesting partial recovery of Pahenu2 MSCs osteoblast differentiation. Up-regulation of oxidative energy production is required for osteoblasts differentiation. Our data suggests impaired Pahenu2 MSC developmental competence involves an energy deficit. We posit energy support and oxidative stress reduction will enable Pahenu2 MSC differentiation in the osteoblast lineage to subsequently increase bone density.


Assuntos
Doenças Ósseas Metabólicas/genética , Estresse Oxidativo/genética , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Fosfatase Alcalina/genética , Animais , Densidade Óssea/genética , Doenças Ósseas Metabólicas/complicações , Doenças Ósseas Metabólicas/tratamento farmacológico , Doenças Ósseas Metabólicas/patologia , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Fenilalanina/genética , Fenilcetonúrias/complicações , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/patologia , Resveratrol/farmacologia
8.
Mol Genet Metab ; 134(1-2): 156-163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34556413

RESUMO

Acyl CoA Dehydrogenase 9 (ACAD9) is a member of the family of flavoenzymes that catalyze the dehydrogenation of acyl-CoAs to 2,3 enoyl-CoAs in mitochondrial fatty acid oxidation (FAO). Inborn errors of metabolism of all family members, including ACAD9, have been described in humans, and represent significant causes of morbidity and mortality particularly in children. ACAD9 deficiency leads to a combined defect in fatty acid oxidation and oxidative phosphorylation (OXPHOS) due to a dual role in the pathways. In addition to its function in mitochondrial FAO, ACAD9 has a second function as one of 14 factors responsible for assembly of complex I of the electron transport chain (ETC). Considerable controversy remains over the relative role of these two functions in normal physiology and the disparate clinical findings described in patients with ACAD9 deficiency. To better understand the normal function of ACAD9 and the pathophysiology of its deficiency, several knock out mouse models were developed. Homozygous total body knock out appeared to be lethal as no ACAD9 animals were obtained. Cre-lox technology was then used to generate tissue-specific deletion of the gene. Cardiac-specific ACAD9 deficient animals had severe neonatal cardiomyopathy and died by 17 days of age. They had severe mitochondrial dysfunction in vitro. Muscle-specific mutants were viable but exhibited muscle weakness. Additional studies of heart muscle from the cardiac specific deficient animals were used to examine the evolutionarily conserved signaling Intermediate in toll pathway (ECSIT) protein, a known binding partner of ACAD9 in the electron chain complex I assembly pathway. As expected, ECSIT levels were significantly reduced in the absence of ACAD9 protein, consistent with the demonstrated impairment of the complex I assembly. The various ACAD9 deficient animals should serve as useful models for development of novel therapeutics for this disorder.


Assuntos
Acidose/genética , Acidose/fisiopatologia , Acil-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Modelos Animais de Doenças , Camundongos , Doenças Mitocondriais/genética , Doenças Mitocondriais/fisiopatologia , Debilidade Muscular/genética , Debilidade Muscular/fisiopatologia , Acidose/complicações , Acil-CoA Desidrogenase/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatia Hipertrófica/complicações , Complexo I de Transporte de Elétrons/genética , Doenças Mitocondriais/complicações , Debilidade Muscular/complicações , Mutação
9.
J Biol Chem ; 294(14): 5466-5486, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30755479

RESUMO

Eukaryotic cell metabolism consists of processes that generate available energy, such as glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (Oxphos), and those that consume it, including macromolecular synthesis, the maintenance of ionic gradients, and cellular detoxification. By converting pyruvate to acetyl-CoA (AcCoA), the pyruvate dehydrogenase (PDH) complex (PDC) links glycolysis and the TCA cycle. Surprisingly, disrupting the connection between glycolysis and the TCA cycle by inactivation of PDC has only minor effects on cell replication. However, the molecular basis for this metabolic re-equilibration is unclear. We report here that CRISPR/Cas9-generated PDH-knockout (PDH-KO) rat fibroblasts reprogrammed their metabolism and their response to short-term c-Myc (Myc) oncoprotein overexpression. PDH-KO cells replicated normally but produced surprisingly little lactate. They also exhibited higher rates of glycolysis and Oxphos. In addition, PDH-KO cells showed altered cytoplasmic and mitochondrial pH, redox states, and mitochondrial membrane potential (ΔΨM). Conditionally activated Myc expression affected some of these parameters in a PDH-dependent manner. PDH-KO cells had increased oxygen consumption rates in response to glutamate, but not to malate, and were depleted in all TCA cycle substrates between α-ketoglutarate and malate despite high rates of glutaminolysis, as determined by flux studies with isotopically labeled glutamine. Malate and pyruvate were diverted to produce aspartate, thereby potentially explaining the failure to accumulate lactate. We conclude that PDH-KO cells maintain proliferative capacity by utilizing glutamine to supply high rates of AcCoA-independent flux through the bottom portion of the TCA cycle while accumulating pyruvate and aspartate that rescue their redox defects.


Assuntos
Ciclo do Ácido Cítrico , Fibroblastos/metabolismo , Potencial da Membrana Mitocondrial , Consumo de Oxigênio , Complexo Piruvato Desidrogenase/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Fibroblastos/patologia , Humanos , Complexo Piruvato Desidrogenase/metabolismo , Ratos , Ratos Mutantes
10.
Biochem Biophys Res Commun ; 527(1): 162-166, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32446361

RESUMO

Dicarboxylic fatty acids, taken as a nutritional supplement or produced endogenously via omega oxidation of monocarboxylic fatty acids, may have therapeutic potential for rare inborn errors of metabolism as well as common metabolic diseases such as type 2 diabetes. Breakdown of dicarboxylic acids yields acetyl-CoA and succinyl-CoA as products, the latter of which is anaplerotic for the TCA cycle. However, little is known about the metabolic pathways responsible for degradation of dicarboxylic acids. Here, we demonstrated with whole-cell fatty acid oxidation assays that both mitochondria and peroxisomes contribute to dicarboxylic acid degradation. Several mitochondrial acyl-CoA dehydrogenases were tested for activity against dicarboxylyl-CoAs. Medium-chain acyl-CoA dehydrogenase (MCAD) exhibited activity with both six and 12 carbon dicarboxylyl-CoAs, and the capacity for dehydrogenation of these substrates was significantly reduced in MCAD knockout mouse liver. However, when dicarboxylic acids were fed to normal mice, the expression of MCAD did not change, while expression of peroxisomal fatty acid oxidation enzymes was greatly upregulated. In conclusion, mitochondrial fatty acid oxidation, and in particular MCAD, contributes to dicarboxylic acid degradation, but feeding dicarboxylic acids induces only the peroxisomal pathway.


Assuntos
Acil-CoA Desidrogenases/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/enzimologia , Animais , Masculino , Camundongos , Camundongos Knockout
11.
Mol Genet Metab ; 131(1-2): 83-89, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32389575

RESUMO

The fatty acid oxidation enzyme long-chain acyl-CoA dehydrogenase (LCAD) is expressed at high levels in human alveolar type II (ATII) cells in the lung. A common polymorphism causing an amino acid substitution (K333Q) was previously linked to a loss of LCAD antigen in the lung tissue in sudden infant death syndrome. However, the effects of the polymorphism on LCAD function has not been tested. The present work evaluated recombinant LCAD K333Q. Compared to wild-type LCAD protein, LCAD K333Q exhibited significantly reduced enzymatic activity. Molecular modeling suggested that K333 is within interacting distance of the essential FAD cofactor, and the K333Q protein showed a propensity to lose FAD. Exogenous FAD only partially rescued the activity of LCAD K333Q. LCAD K333Q protein was less stable than wild-type when incubated at physiological temperatures, likely explaining the observation of dramatically reduced LCAD antigen in primary ATII cells isolated from individuals homozygous for K333Q. Despite the effect of K333Q on activity, stability, and antigen levels, the frequency of the polymorphism was not increased among infants and children with lung disease.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/genética , Estabilidade Enzimática/genética , Pneumopatias/genética , Relação Estrutura-Atividade , Acil-CoA Desidrogenase de Cadeia Longa/ultraestrutura , Animais , Criança , Humanos , Lactente , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/metabolismo , Pneumopatias/patologia , Modelos Moleculares , Oxirredução , Polimorfismo Genético , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia
12.
J Am Soc Nephrol ; 30(12): 2384-2398, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31575700

RESUMO

BACKGROUND: The primary site of damage during AKI, proximal tubular epithelial cells, are highly metabolically active, relying on fatty acids to meet their energy demands. These cells are rich in mitochondria and peroxisomes, the two organelles that mediate fatty acid oxidation. Emerging evidence shows that both fatty acid pathways are regulated by reversible posttranslational modifications, particularly by lysine acylation. Sirtuin 5 (Sirt5), which localizes to both mitochondria and peroxisomes, reverses post-translational lysine acylation on several enzymes involved in fatty acid oxidation. However, the role of the Sirt5 in regulating kidney energy metabolism has yet to be determined. METHODS: We subjected male Sirt5-deficient mice (either +/- or -/-) and wild-type controls, as well as isolated proximal tubule cells, to two different AKI models (ischemia-induced or cisplatin-induced AKI). We assessed kidney function and injury with standard techniques and measured fatty acid oxidation by the catabolism of 14C-labeled palmitate to 14CO2. RESULTS: Sirt5 was highly expressed in proximal tubular epithelial cells. At baseline, Sirt5 knockout (Sirt5-/- ) mice had modestly decreased mitochondrial function but significantly increased fatty acid oxidation, which was localized to the peroxisome. Although no overt kidney phenotype was observed in Sirt5-/- mice, Sirt5-/- mice had significantly improved kidney function and less tissue damage compared with controls after either ischemia-induced or cisplatin-induced AKI. This coincided with higher peroxisomal fatty acid oxidation compared with mitochondria fatty acid oxidation in the Sirt5-/- proximal tubular epithelial cells. CONCLUSIONS: Our findings indicate that Sirt5 regulates the balance of mitochondrial versus peroxisomal fatty acid oxidation in proximal tubular epithelial cells to protect against injury in AKI. This novel mechanism might be leveraged for developing AKI therapies.


Assuntos
Injúria Renal Aguda/metabolismo , Ácidos Graxos/metabolismo , Túbulos Renais Proximais/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Sirtuínas/fisiologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Cisplatino/toxicidade , Rim/irrigação sanguínea , Masculino , Camundongos , Camundongos Knockout , Oxirredução , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Sirtuínas/deficiência , Sirtuínas/genética
13.
J Am Soc Nephrol ; 30(7): 1192-1205, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31142573

RESUMO

BACKGROUND: Nephron progenitors, the cell population that give rise to the functional unit of the kidney, are metabolically active and self-renew under glycolytic conditions. A switch from glycolysis to mitochondrial respiration drives these cells toward differentiation, but the mechanisms that control this switch are poorly defined. Studies have demonstrated that kidney formation is highly dependent on oxygen concentration, which is largely regulated by von Hippel-Lindau (VHL; a protein component of a ubiquitin ligase complex) and hypoxia-inducible factors (a family of transcription factors activated by hypoxia). METHODS: To explore VHL as a regulator defining nephron progenitor self-renewal versus differentiation, we bred Six2-TGCtg mice with VHLlox/lox mice to generate mice with a conditional deletion of VHL from Six2+ nephron progenitors. We used histologic, immunofluorescence, RNA sequencing, and metabolic assays to characterize kidneys from these mice and controls during development and up to postnatal day 21. RESULTS: By embryonic day 15.5, kidneys of nephron progenitor cell-specific VHL knockout mice begin to exhibit reduced maturation of nephron progenitors. Compared with controls, VHL knockout kidneys are smaller and developmentally delayed by postnatal day 1, and have about half the number of glomeruli at postnatal day 21. VHL knockout nephron progenitors also exhibit persistent Six2 and Wt1 expression, as well as decreased mitochondrial respiration and prolonged reliance on glycolysis. CONCLUSIONS: Our findings identify a novel role for VHL in mediating nephron progenitor differentiation through metabolic regulation, and suggest that VHL is required for normal kidney development.


Assuntos
Néfrons/citologia , Células-Tronco/citologia , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Glicólise , Proteínas de Homeodomínio/fisiologia , Camundongos , Mitocôndrias/metabolismo , Fatores de Transcrição/fisiologia
14.
Diabetologia ; 62(12): 2325-2339, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31511929

RESUMO

AIMS/HYPOTHESIS: Absent in melanoma 2 (AIM2) is a cytosolic sensor for double-stranded DNA and a tumour suppressor. Binding of double-stranded DNA to AIM2 forms the AIM2 inflammasome, leading to activation of caspase-1 and production of IL-1ß and IL-18. Although inflammasome-independent effects of AIM2 have been reported, its role in energy metabolism is unknown. We aimed to evaluate the effect of AIM2 in energy metabolism and glucose homeostasis. METHODS: Male and female whole body Aim2 knockout (Aim2-/-) mice were used in the current study. Body weight, food intake, body composition, energy expenditure, fasting blood glucose levels, GTT and body temperature were measured at indicated time points. RNA sequencing was carried out on gonadal white adipose tissue (gWAT) in 14-month-old female mice. mRNA and protein levels in tissues were analysed by quantitative real-time PCR and immunoblot. Immune cell infiltration in gWAT was examined by flow cytometry. Stromal vascular fractions isolated from gWAT were used to investigate adipocyte differentiation. RESULTS: Male and female Aim2-/- mice were obese compared with wild-type controls from 7 weeks of age until 51 weeks of age, with increased adiposity in both subcutaneous and visceral fat depots. While there were no differences in food intake, Aim2-/- mice demonstrated decreased energy expenditure and impaired brown adipose tissue function compared with wild-type controls. Fasting glucose and insulin levels were elevated, and Aim2-/- mice were glucose intolerant on intraperitoneal GTT. RNA sequencing revealed marked upregulation of the IFN-inducible gene Ifi202b, which encodes protein 202 (p202) and elevated inflammatory signalling in gWAT of Aim2-/- mice. Increased infiltration of total and Ly6Clow monocytes was noted at 8 weeks of age in gWAT, before the onset of obesity and insulin resistance. Ifi202b knockdown blocked adipogenesis in stromal vascular fractions and reduced inflammation in bone marrow-derived macrophages, demonstrating a key role of p202 in mediating the increased adipogenesis and inflammation in Aim2-/- mice. CONCLUSIONS/INTERPRETATION: These results demonstrate a fundamental role for AIM2 in energy metabolism, inflammation and insulin resistance. Our studies establish a novel link between the innate immunity proteins, AIM2 and p202, and metabolism.


Assuntos
Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inflamação/metabolismo , Resistência à Insulina/genética , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Adiposidade/genética , Animais , Glicemia/metabolismo , Temperatura Corporal/genética , Proteínas de Ligação a DNA/genética , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Jejum/metabolismo , Feminino , Inflamação/genética , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética
15.
Anal Biochem ; 581: 113332, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31194945

RESUMO

Acyl-CoA dehydrogenases (ACADs) play key roles in the mitochondrial catabolism of fatty acids and branched-chain amino acids. All nine characterized ACAD enzymes use electron transfer flavoprotein (ETF) as their redox partner. The gold standard for measuring ACAD activity is the anaerobic ETF fluorescence reduction assay, which follows the decrease of pig ETF fluorescence as it accepts electrons from an ACAD in vitro. Although first described 35 years ago, the assay has not been widely used due to the need to maintain an anaerobic assay environment and to purify ETF from pig liver mitochondria. Here, we present a method for expressing recombinant pig ETF in E coli and purifying it to homogeneity. The recombinant protein is virtually pure after one chromatography step, bears higher intrinsic fluorescence than the native enzyme, and provides enhanced activity in the ETF fluorescence reduction assay. Finally, we present a simplified protocol for removing molecular oxygen that allows adaption of the assay to a 96-well plate format. The availability of recombinant pig ETF and the microplate version of the ACAD activity assay will allow wide application of the assay for both basic research and clinical diagnostics.


Assuntos
Acil-CoA Desidrogenases/química , Flavoproteínas Transferidoras de Elétrons/química , Acil-CoA Desidrogenases/genética , Animais , Flavoproteínas Transferidoras de Elétrons/genética , Escherichia coli/química , Escherichia coli/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Suínos
16.
J Biol Chem ; 292(24): 10068-10086, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28432125

RESUMO

Hepatocellular carcinoma (HCC) is a common cancer that frequently overexpresses the c-Myc (Myc) oncoprotein. Using a mouse model of Myc-induced HCC, we studied the metabolic, biochemical, and molecular changes accompanying HCC progression, regression, and recurrence. These involved altered rates of pyruvate and fatty acid ß-oxidation and the likely re-directing of glutamine into biosynthetic rather than energy-generating pathways. Initial tumors also showed reduced mitochondrial mass and differential contributions of electron transport chain complexes I and II to respiration. The uncoupling of complex II's electron transport function from its succinate dehydrogenase activity also suggested a mechanism by which Myc generates reactive oxygen species. RNA sequence studies revealed an orderly progression of transcriptional changes involving pathways pertinent to DNA damage repair, cell cycle progression, insulin-like growth factor signaling, innate immunity, and further metabolic re-programming. Only a subset of functions deregulated in initial tumors was similarly deregulated in recurrent tumors thereby indicating that the latter can "normalize" some behaviors to suit their needs. An interactive and freely available software tool was developed to allow continued analyses of these and other transcriptional profiles. Collectively, these studies define the metabolic, biochemical, and molecular events accompanyingHCCevolution, regression, and recurrence in the absence of any potentially confounding therapies.


Assuntos
Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação para Cima , Animais , Carcinogênese , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/prevenção & controle , Reparo do DNA , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Fígado/patologia , Masculino , Camundongos Transgênicos , Renovação Mitocondrial , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/fisiopatologia , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias Experimentais/patologia , Neoplasias Experimentais/prevenção & controle , Proteínas Proto-Oncogênicas c-myc/genética , Espécies Reativas de Oxigênio/metabolismo , Carga Tumoral
17.
J Biol Chem ; 292(24): 10239-10249, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28458255

RESUMO

SIRT5 is a lysine desuccinylase known to regulate mitochondrial fatty acid oxidation and the urea cycle. Here, SIRT5 was observed to bind to cardiolipin via an amphipathic helix on its N terminus. In vitro, succinyl-CoA was used to succinylate liver mitochondrial membrane proteins. SIRT5 largely reversed the succinyl-CoA-driven lysine succinylation. Quantitative mass spectrometry of SIRT5-treated membrane proteins pointed to the electron transport chain, particularly Complex I, as being highly targeted for desuccinylation by SIRT5. Correspondingly, SIRT5-/- HEK293 cells showed defects in both Complex I- and Complex II-driven respiration. In mouse liver, SIRT5 expression was observed to localize strictly to the periportal hepatocytes. However, homogenates prepared from whole SIRT5-/- liver did show reduced Complex II-driven respiration. The enzymatic activities of Complex II and ATP synthase were also significantly reduced. Three-dimensional modeling of Complex II suggested that several SIRT5-targeted lysine residues lie at the protein-lipid interface of succinate dehydrogenase subunit B. We postulate that succinylation at these sites may disrupt Complex II subunit-subunit interactions and electron transfer. Lastly, SIRT5-/- mice, like humans with Complex II deficiency, were found to have mild lactic acidosis. Our findings suggest that SIRT5 is targeted to protein complexes on the inner mitochondrial membrane via affinity for cardiolipin to promote respiratory chain function.


Assuntos
Cardiolipinas/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Hepatócitos/enzimologia , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Sirtuínas/metabolismo , Substituição de Aminoácidos , Animais , Cardiolipinas/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Células HEK293 , Hepatócitos/metabolismo , Humanos , Lisina/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Mutação , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sirtuínas/química , Sirtuínas/genética
18.
Biochem Biophys Res Commun ; 497(2): 700-704, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29458021

RESUMO

We previously showed that the mitochondrial fatty acid oxidation enzyme long-chain acyl-CoA dehydrogenase (LCAD) is expressed in alveolar type II pneumocytes and that LCAD-/- mice have altered breathing mechanics and surfactant defects. Here, we hypothesized that LCAD-/- mice would be susceptible to influenza infection. Indeed, LCAD-/- mice demonstrated increased mortality following infection with 2009 pandemic influenza (A/CA/07/09). However, the mortality was not due to increased lung injury, as inflammatory cell counts, viral titers, and histology scores all showed non-significant trends toward milder injury in LCAD-/- mice. To confirm this, LCAD-/- were infected with a second, mouse-adapted H1N1 virus (A/PR/8/34), to which they responded with significantly less lung injury. While both strains become increasingly hypoglycemic over the first week post-infection, LCAD-/- mice lose body weight more rapidly than wild-type mice. Surprisingly, while acutely fasted LCAD-/- mice develop hepatic steatosis, influenza-infected LCAD-/- mice do not. They do, however, become more hypothermic than wild-type mice and demonstrate increased blood lactate values. We conclude that LCAD-/- mice succumb to influenza from bioenergetic starvation, likely due to increased reliance upon glucose for energy.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/genética , Técnicas de Silenciamento de Genes , Vírus da Influenza A Subtipo H1N1/fisiologia , Pulmão/patologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/patologia , Animais , Peso Corporal , Feminino , Hipotermia/etiologia , Hipotermia/genética , Hipotermia/patologia , Hipotermia/virologia , Pulmão/virologia , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/virologia
19.
J Inherit Metab Dis ; 41(1): 5-17, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28952033

RESUMO

Research over the past two decades has led to advances in our understanding of the genetic and metabolic factors that underlie the pathogenesis of type 2 diabetes mellitus (T2DM). While T2DM is defined by its hallmark metabolic symptoms, the genetic risk factors for T2DM are more immune-related than metabolism-related, and the observed metabolic disease may be secondary to chronic inflammation. Regardless, these metabolic changes are not benign, as the accumulation of some metabolic intermediates serves to further drive the inflammation and cell stress, eventually leading to insulin resistance and ultimately to T2DM. Because many of the biochemical changes observed in the pre-diabetic state (i.e., ectopic lipid storage, increased acylcarnitines, increased branched-chain amino acids) are also observed in patients with rare inborn errors of fatty acid and amino acid metabolism, an interesting question is raised regarding whether isolated metabolic gene defects can confer an increased risk for T2DM. In this review, we attempt to address this question by summarizing the literature regarding the metabolic pathways at the crossroads of diabetes and inborn errors of metabolism. Studies using cell culture and animal models have revealed that, within a given pathway, disrupting some genes can lead to insulin resistance while for others there may be no effect or even improved insulin sensitivity. This differential response to ablating a single metabolic gene appears to be dependent upon the specific metabolic intermediates that accumulate and whether these intermediates subsequently activate inflammatory pathways. This highlights the need for future studies to determine whether certain inborn errors may confer increased risk for diabetes as the patients age.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Resistência à Insulina , Erros Inatos do Metabolismo/metabolismo , Aminoácidos/sangue , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Metabolismo Energético/genética , Humanos , Mediadores da Inflamação/sangue , Resistência à Insulina/genética , Lipídeos/sangue , Erros Inatos do Metabolismo/epidemiologia , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/fisiopatologia , Prognóstico , Medição de Risco , Fatores de Risco
20.
J Biol Chem ; 291(51): 26241-26251, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27738108

RESUMO

Hepatoblastoma (HB) is associated with aberrant activation of the ß-catenin and Hippo/YAP signaling pathways. Overexpression of mutant ß-catenin and YAP in mice induces HBs that express high levels of c-Myc (Myc). In light of recent observations that Myc is unnecessary for long-term hepatocyte proliferation, we have now examined its role in HB pathogenesis using the above model. Although Myc was found to be dispensable for in vivo HB initiation, it was necessary to sustain rapid tumor growth. Gene expression profiling identified key molecular differences between myc+/+ (WT) and myc-/- (KO) hepatocytes and HBs that explain these behaviors. In HBs, these included both Myc-dependent and Myc-independent increases in families of transcripts encoding ribosomal proteins, non-structural factors affecting ribosome assembly and function, and enzymes catalyzing glycolysis and lipid bio-synthesis. In contrast, transcripts encoding enzymes involved in fatty acid ß-oxidation were mostly down-regulated. Myc-independent metabolic changes associated with HBs included dramatic reductions in mitochondrial mass and oxidative function, increases in ATP content and pyruvate dehydrogenase activity, and marked inhibition of fatty acid ß-oxidation (FAO). Myc-dependent metabolic changes included higher levels of neutral lipid and acetyl-CoA in WT tumors. The latter correlated with higher histone H3 acetylation. Collectively, our results indicate that the role of Myc in HB pathogenesis is to impose mutually dependent changes in gene expression and metabolic reprogramming that are unattainable in non-transformed cells and that cooperate to maximize tumor growth.


Assuntos
Regulação Neoplásica da Expressão Gênica , Hepatoblastoma/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Energético/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA