Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 43(4): 2442-53, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25634893

RESUMO

The Mediator multiprotein complex ('Mediator') is an important transcriptional coregulator that is evolutionarily conserved throughout eukaryotes. Although some Mediator subunits are essential for the transcription of all protein-coding genes, others influence the expression of only subsets of genes and participate selectively in cellular signaling pathways. Here, we review the current knowledge of Mediator subunit function in the nematode Caenorhabditis elegans, a metazoan in which established and emerging genetic technologies facilitate the study of developmental and physiological regulation in vivo. In this nematode, unbiased genetic screens have revealed critical roles for Mediator components in core developmental pathways such as epidermal growth factor (EGF) and Wnt/ß-catenin signaling. More recently, important roles for C. elegans Mediator subunits have emerged in the regulation of lipid metabolism and of systemic stress responses, engaging conserved transcription factors such as nuclear hormone receptors (NHRs). We emphasize instances where similar functions for individual Mediator subunits exist in mammals, highlighting parallels between Mediator subunit action in nematode development and in human cancer biology. We also discuss a parallel between the association of the Mediator subunit MED12 with several human disorders and the role of its C. elegans ortholog mdt-12 as a regulatory hub that interacts with numerous signaling pathways.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Complexo Mediador/fisiologia , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Sistema de Sinalização das MAP Quinases , Complexo Mediador/genética , Transcrição Gênica
2.
Aging Cell ; 17(3): e12743, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29508513

RESUMO

Endogenous and exogenous stresses elicit transcriptional responses that limit damage and promote cell/organismal survival. Like its mammalian counterparts, hepatocyte nuclear factor 4 (HNF4) and peroxisome proliferator-activated receptor α (PPARα), Caenorhabditis elegans NHR-49 is a well-established regulator of lipid metabolism. Here, we reveal that NHR-49 is essential to activate a transcriptional response common to organic peroxide and fasting, which includes the pro-longevity gene fmo-2/flavin-containing monooxygenase. These NHR-49-dependent, stress-responsive genes are also upregulated in long-lived glp-1/notch receptor mutants, with two of them making critical contributions to the oxidative stress resistance of wild-type and long-lived glp-1 mutants worms. Similar to its role in lipid metabolism, NHR-49 requires the mediator subunit mdt-15 to promote stress-induced gene expression. However, NHR-49 acts independently from the transcription factor hlh-30/TFEB that also promotes fmo-2 expression. We show that activation of the p38 MAPK, PMK-1, which is important for adaptation to a variety of stresses, is also important for peroxide-induced expression of a subset of NHR-49-dependent genes that includes fmo-2. However, organic peroxide increases NHR-49 protein levels, by a posttranscriptional mechanism that does not require PMK-1 activation. Together, these findings establish a new role for the HNF4/PPARα-related NHR-49 as a stress-activated regulator of cytoprotective gene expression.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Jejum/metabolismo , Ácidos Graxos/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Metabolismo dos Lipídeos/imunologia , Receptores Citoplasmáticos e Nucleares/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Estresse Oxidativo , Transdução de Sinais
3.
Sci Rep ; 5: 12523, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26235900

RESUMO

E5 proteins are amongst the least understood of the Human Papillomavirus (HPV) encoded gene products. They are small, membrane-integrated proteins known to modulate a number of critical host pathways associated with pathogenesis including growth factor receptor signaling and immune evasion. Their role in the virus life cycle is less clear, indicating a role in the productive stages of the life cycle. However, a mechanism for this is currently lacking. Here we describe the identification of a novel binding partner of E5, YIPF4 using yeast two-hybrid analysis. YIPF4 is also a poorly characterized membrane spanning protein. Mutagenesis studies implicated the transmembrane regions of each protein as important for their interaction. Binding to YIPF4 was found for all E5 proteins tested suggesting that this interaction may mediate a conserved E5 function. In normal human keratinocytes YIPF4 expression was down-regulated upon differentiation and this reduction was partially rescued in cells harbouring HPV. Despite the conserved nature of the interaction with E5, siRNA mediated depletion of YIPF4 failed to impede two well-characterized functions of E5, namely EGFR trafficking or HLA class I presentation. Continued studies of YIPF4 are warranted to determine its role in the PV life cycle.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Receptores ErbB/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/fisiologia , Queratinócitos/virologia , Proteínas de Membrana/genética , Proteínas Oncogênicas Virais/genética , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Displasia do Colo do Útero/metabolismo , Displasia do Colo do Útero/virologia
4.
Aging Cell ; 13(1): 70-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23957350

RESUMO

Reactive oxygen species (ROS) play important signaling roles in metazoans, but also cause significant molecular damage. Animals tightly control ROS levels using sophisticated defense mechanisms, yet the transcriptional pathways that induce ROS defense remain incompletely understood. In the nematode Caenorhabditis elegans, the transcription factor SKN-1 is considered a master regulator for detoxification and oxidative stress responses. Here, we show that MDT-15, a subunit of the conserved Mediator complex, is also required for oxidative stress responses in nematodes. Specifically, mdt-15 is required to express SKN-1 targets upon chemical and genetic increase in SKN-1 activity. mdt-15 is also required to express genes in SKN-1-dependent and SKN-1-independent fashions downstream of insulin/IGF-1 signaling and for the longevity of daf-2/insulin receptor mutants. At the molecular level, MDT-15 binds SKN-1 through a region distinct from the classical transcription-factor-binding KIX-domain. Moreover, mdt-15 is essential for the transcriptional response to and survival on the organic peroxide tert-butyl-hydroperoxide (tBOOH), a largely SKN-1-independent response. The MDT-15 interacting nuclear hormone receptor, NHR-64, is specifically required for tBOOH but not arsenite resistance, but NHR-64 is dispensable for the transcriptional response to tBOOH. Hence, NHR-64 and MDT-15's mode of action remain elusive. Lastly, the role of MDT-15 in oxidative stress defense is functionally separable from its function in fatty acid metabolism, as exogenous polyunsaturated fatty acid complementation rescues developmental, but not stress sensitivity phenotypes of mdt-15 worms. Our findings reveal novel conserved players in the oxidative stress response and suggest a broad cytoprotective role for MDT-15.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Sequência Conservada , Estresse Oxidativo , Fatores de Transcrição/metabolismo , Animais , Arsenitos/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Genes de Helmintos , Modelos Biológicos , Estresse Oxidativo/genética , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Deleção de Sequência , Análise de Sobrevida , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , terc-Butil Hidroperóxido/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA