RESUMO
Extreme UV (XUV) frequency comb generation in the wavelength range of 51 to 85 nm is reported based on high-order harmonic generation of two consecutive IR frequency comb pulses that were amplified in an optical parametric chirped pulse amplifier. The versatility of the system is demonstrated by recording direct XUV frequency comb excitation signals in He, Ne, and Ar with visibilities of up to 61%.
RESUMO
Precision spectroscopy of the simple hydrogen atom has inspired dramatic advances in optical frequency metrology: femtosecond laser optical frequency comb synthesizers have revolutionized the precise measurement of optical frequencies, and they provide a reliable clock mechanism for optical atomic clocks. Precision spectroscopy of the hydrogen 1S-2S two-photon resonance has reached an accuracy of 1.4 parts in 10(14), and considerable future improvements are envisioned. Such laboratory experiments are setting new limits for possible slow variations of the fine structure constant alpha and the magnetic moment of the caesium nucleus mu(Cs) in units of the Bohr magneton mu(B).