RESUMO
BACKGROUND: Wastewater treatment plants (WWTPs) are considered hotspots for the environmental dissemination of antimicrobial resistance (AMR) determinants. Vancomycin-Resistant Enterococcus (VRE) are candidates for gauging the degree of AMR bacteria in wastewater. Enterococcus faecalis and Enterococcus faecium are recognized indicators of fecal contamination in water. Comparative genomics of enterococci isolated from conventional activated sludge (CAS) and biological aerated filter (BAF) WWTPs was conducted. RESULTS: VRE isolates, including E. faecalis (n = 24), E. faecium (n = 11), E. casseliflavus (n = 2) and E. gallinarum (n = 2) were selected for sequencing based on WWTP source, species and AMR phenotype. The pangenomes of E. faecium and E. faecalis were both open. The genomic fraction related to the mobilome was positively correlated with genome size in E. faecium (p < 0.001) and E. faecalis (p < 0.001) and with the number of AMR genes in E. faecium (p = 0.005). Genes conferring vancomycin resistance, including vanA and vanM (E. faecium), vanG (E. faecalis), and vanC (E. casseliflavus/E. gallinarum), were detected in 20 genomes. The most prominent functional AMR genes were efflux pumps and transporters. A minimum of 16, 6, 5 and 3 virulence genes were detected in E. faecium, E. faecalis, E. casseliflavus and E. gallinarum, respectively. Virulence genes were more common in E. faecalis and E. faecium, than E. casseliflavus and E. gallinarum. A number of mobile genetic elements were shared among species. Functional CRISPR/Cas arrays were detected in 13 E. faecalis genomes, with all but one also containing a prophage. The lack of a functional CRISPR/Cas arrays was associated with multi-drug resistance in E. faecium. Phylogenetic analysis demonstrated differential clustering of isolates based on original source but not WWTP. Genes related to phage and CRISPR/Cas arrays could potentially serve as environmental biomarkers. CONCLUSIONS: There was no discernible difference between enterococcal genomes from the CAS and BAF WWTPs. E. faecalis and E. faecium have smaller genomes and harbor more virulence, AMR, and mobile genetic elements than other Enterococcus spp.
Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Enterococcus faecium/genética , Genômica/métodos , Águas Residuárias/microbiologia , Tamanho do Genoma , Sequências Repetitivas Dispersas , Tipagem de Sequências Multilocus , Filogenia , Resistência a Vancomicina , Fatores de Virulência/genética , Sequenciamento Completo do GenomaRESUMO
Serotyping of Salmonella enterica subsp. enterica is a critical step for foodborne salmonellosis investigation. To identify Salmonella enterica subsp. enterica serovars, we have developed a new assay based on a triplex polymerase chain reaction (PCR) with pyrosequencing for amplicon confirmation and phylogenetic discrimination of strains. The top 54 most prevalent serovars of S. enterica in Canada were examined with a total of 23 single-nucleotide polymorphisms (SNPs) and (or) single-nucleotide variations (SNVs) located on 3 genes (fliD, sopE2, and spaO). Seven of the most common serovars, Newport, Typhi, Javiana, Infantis, Thompson, Heidelberg, and Enteritidis, were successfully distinguished from the other serovars based on their unique SNP-SNV combinations. The remaining serovars, including Typhimurium, ssp I:4,[5],12:i:-, and Saintpaul, were further divided into 47 subgroups that demonstrate the relatedness to phylogenetic classifications of each serovar. This pyrosequencing assay is not only cost-effective, rapid, and user-friendly, but also provides phylogenetic information by analyzing 23 selected SNPs. With the added layer of confidence in the PCR results and the accuracy and speed of pyrosequencing, this novel method would benefit the food industry and provides a tool for rapid outbreak investigation through quick detection and identification of common S. enterica serovars in Canada.
Assuntos
Microbiologia de Alimentos/métodos , Salmonella enterica/classificação , Salmonella enterica/genética , Análise de Sequência de DNA , Sorotipagem , Canadá , Humanos , Filogenia , Reação em Cadeia da Polimerase , Infecções por Salmonella/microbiologia , Salmonella enterica/isolamento & purificação , SorogrupoRESUMO
BACKGROUND: Enterococcus is ubiquitous in nature and is a commensal of both the bovine and human gastrointestinal (GI) tract. It is also associated with clinical infections in humans. Subtherapeutic administration of antibiotics to cattle selects for antibiotic resistant enterococci in the bovine GI tract. Antibiotic resistance genes (ARGs) may be present in enterococci following antibiotic use in cattle. If located on mobile genetic elements (MGEs) their dissemination between Enterococcus species and to pathogenic bacteria may be promoted, reducing the efficacy of antibiotics. RESULTS: We present a comparative genomic analysis of twenty-one Enterococcus spp. isolated from bovine feces including Enterococcus hirae (n = 10), Enterococcus faecium (n = 3), Enterococcus villorum (n = 2), Enterococcus casseliflavus (n = 2), Enterococcus faecalis (n = 1), Enterococcus durans (n = 1), Enterococcus gallinarum (n = 1) and Enterococcus thailandicus (n = 1). The analysis revealed E. faecium and E. faecalis from bovine feces share features with human clinical isolates, including virulence factors. The Tn917 transposon conferring macrolide-lincosamide-streptogramin B resistance was identified in both E. faecium and E. hirae, suggesting dissemination of ARGs on MGEs may occur in the bovine GI tract. An E. faecium isolate was also identified with two integrative conjugative elements (ICEs) belonging to the Tn916 family of ICE, Tn916 and Tn5801, both conferring tetracycline resistance. CONCLUSIONS: This study confirms the presence of enterococci in the bovine GI tract possessing ARGs on MGEs, but the predominant species in cattle, E. hirae is not commonly associated with infections in humans. Analysis using additional complete genomes of E. faecium from the NCBI database demonstrated differential clustering of commensal and clinical isolates, suggesting that these strains may be specifically adapted to their respective environments.
Assuntos
Bovinos/microbiologia , Enterococcus/classificação , Enterococcus/genética , Enterococcus/isolamento & purificação , Fezes/microbiologia , Genoma Bacteriano/genética , Genômica , Animais , Antibacterianos/farmacologia , Bacteriófagos , Sistemas CRISPR-Cas , Doenças dos Bovinos/microbiologia , Análise por Conglomerados , Elementos de DNA Transponíveis/genética , DNA Bacteriano/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , Enterococcus/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/isolamento & purificação , Enterococcus faecalis/patogenicidade , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Enterococcus faecium/patogenicidade , Streptococcus faecium ATCC 9790/efeitos dos fármacos , Streptococcus faecium ATCC 9790/genética , Streptococcus faecium ATCC 9790/isolamento & purificação , Streptococcus faecium ATCC 9790/patogenicidade , Microbioma Gastrointestinal , Humanos , Sequências Repetitivas Dispersas/genética , Lincosamidas/farmacologia , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus/métodos , Filogenia , Polimorfismo de Nucleotídeo Único , Estreptogramina B/farmacologia , Resistência a Tetraciclina/genética , Fatores de Virulência/genéticaRESUMO
Clinical outcomes of Shiga toxin (stx)-producing Escherichia coli infection are largely determined by virulence gene subtypes. This study used a polymerase chain reaction (PCR)-pyrosequencing assay to analyze single-nucleotide polymorphisms for subtyping three major virulence genes (stx1, stx2, eae) of pathogenic E. coli (O157, O26, O111, and O103) isolated from cattle over a 2-year interval (n = 465) and human clinical cases (n = 42) in western Canada. Most bovine isolates were PCR positive for at least one target virulence gene (367/465), whereas 100% of human isolates harbored eae in combination with at least one stx gene. Four Shiga toxin (1a, 2a, 2c, and 2e) and four eae (λ/γ1-eae, É-eae, θ/γ2-eae, and ß-eae) subtypes were identified in over 25 distinct virulence genotypes. Among cattle isolates, every serogroup, but O103, presented a dominant genotype (O157: stx1a+stx2a+λ/γ1-eae, O26: ß-eae alone, and O111: stx1a+θ/γ2-eae). Similar patterns were found in human isolates, although it was not possible to establish a clear genotypic association between the two sources. Many O157 and non-O157 cattle isolates lacked stx genes; the absence was greater in non-O157 (75/258) and O157:non-H7 (19/40) than in O157:H7 strains (1/164). In addition, there was a greater diversity of virulence genotypes of E. coli isolated from cattle than those of human diseases, which could be due to sample characteristics (e.g., source and clinical condition). However, the majority of cattle strains had virulence profiles identical to those of clinical cases. Consequently, determining the presence of certain stx (stx1a and stx2a) and eae (λ/γ1-eae) subtypes known to cause human disease would be a valuable tool for risk assessment and prediction of disease outcome along the farm-to-fork continuum.
Assuntos
Escherichia coli O157/genética , Fezes/microbiologia , Genes Bacterianos , Carne Vermelha/microbiologia , Escherichia coli Shiga Toxigênica/genética , Alberta , Animais , Carboidratos Epimerases/genética , Bovinos/microbiologia , Escherichia coli O157/isolamento & purificação , Contaminação de Alimentos , Microbiologia de Alimentos , Humanos , Polimorfismo de Nucleotídeo Único , Sorotipagem , Toxinas Shiga/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Transaminases/genéticaRESUMO
This prospective study evaluated seroepidemiologic features of canine respiratory coronavirus (CRCoV), canine parainfluenza virus (CPIV), and Bordetella bronchiseptica infections in dogs in an urban humane shelter and in rural/small community dog populations in western Canada. Seroprevalence of CRCoV and CPIV was low compared with other countries; seroprevalence of B. bronchiseptica was moderate to high in most populations examined. Rural dogs were 0.421 times (P ≤ 0.0001) less likely to be positive for CRCoV than dogs admitted to the shelter. There were no statistical differences in prevalence of antibodies to B. bronchiseptica and CPIV between urban and rural populations. Dogs from Fort Resolution, NWT were significantly (P < 0.05) less likely to have moderate or high antibody titers to the 3 agents than dogs in the shelter. Seroconversion to CRCoV was common in dogs in the shelter, but was not associated (P = 0.18) with respiratory disease. Antibodies to CRCoV, CPIV, or B. bronchiseptica on arrival were not significantly (P > 0.05) associated with disease-sparing after entry into the shelter.
Assuntos
Infecções por Bordetella/veterinária , Bordetella bronchiseptica/imunologia , Infecções por Coronavirus/veterinária , Coronavirus Canino/imunologia , Doenças do Cão/epidemiologia , Infecções por Paramyxoviridae/veterinária , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/sangue , Infecções por Bordetella/epidemiologia , Canadá/epidemiologia , Infecções por Coronavirus/epidemiologia , Cães , Feminino , Masculino , Infecções por Paramyxoviridae/epidemiologia , Estudos Prospectivos , Estudos SoroepidemiológicosRESUMO
Campylobacter fetus is currently classified into three main subspecies, but only two of these, C. fetus subspecies fetus and C. fetus subsp. venerealis originate principally from ruminants where they inhabit different niches and cause distinct pathogenicity. Their importance as pathogens in international trade and reporting is also different yet the criteria defining these properties have never been fully substantiated nor understood. The situation is further compromised because the ability to differentiate between these two closely related C. fetus subspecies has traditionally been performed by phenotypic characterisation of isolates, methods which are limited in scope, time-consuming, tedious, and often yield inconsistent results, thereby leading to isolate misidentification. The development of robust genetic markers that could enable rapid discrimination between C. fetus subsp. fetus and subsp. venerealis has also been challenging due to limited differences in the gene complement of their genomes, high levels of sequence repetition, the small number of closed genome sequences available and the lack of standardisation of the discriminatory biochemical tests employed for comparative purposes. To yield a better understanding of the genomic differences that define these C. fetus strains, seven isolates were exhaustively characterised phenotypically and genetically and compared with seven previously well characterised isolates. Analysis of these 14 C. fetus samples clearly illustrated that adaption by C. fetus subsp. venerealis to the bovine reproductive tract correlated with increasing genome length and plasticity due to the acquisition and propagation of several mobile elements including prophages, transposons and plasmids harbouring virulence factors. Significant differences in the repertoire of the CRISPR (clustered regularly interspersed short palindromic repeats)-cas system of all C. fetus strains was also found. We therefore suggest that a deficiency in this adaptive immune system may have permitted the emergence of extensive genome plasticity and led to changes in host tropism through gene disruption and/or changes in gene expression. Notable differences in the sub-species complement of DNA adenine methylase genes may also have an impact. These data will facilitate future studies to better understand the precise genetic differences that underlie the phenotypic and virulence differences between these animal pathogens and may identify additional markers useful for diagnosis and sub-typing.
RESUMO
Introduction: Bacillus anthracis, the etiological agent of anthrax, produces long-lived spores, which are resistant to heat, cold, pH, desiccation, and chemical agents. The spores maintain their ability to produce viable bacteria even after decades, and when inhaled can cause fatal disease in over half of the clinical cases. Owing to these characteristics, anthrax has been repeatedly selected for both bioweapon and bioterrorism use. In the event of a bioterrorism attack, surfaces in the vicinity of the attack will be contaminated, and recovering from such an event requires rapid and effective decontamination. Previous decontamination method development has focused mainly on temperatures >0°C, and have shown poor efficacy at subzero temperatures. Methods: In this study, we demonstrate the use of calcium chloride (CaCl2) as a freezing point depression agent for pH-adjusted sodium hypochlorite (NaOCl) for the effective and rapid decontamination of B. anthracis Sterne strain spores at subzero temperatures. Results: We show the complete decontamination of 106 B. anthracis Sterne strain spores at temperatures as low as -20°C within 2.5 min by submersion in solution containing 25% (w/v) CaCl2, 0.50% NaOCl, and 0.40% (v/v) acetic acid. We also demonstrate significant reduction in number of spores at -28°C. Conclusions: The results show promise for rapidly decontaminating equipment and materials used in the response to bioterrorism events using readily available consumer chemicals. Future study should examine the efficacy of these results on complex surfaces.
RESUMO
Real-time PCR has been used previously to detect Yersinia pestis; this study applies this rapid, specific, and sensitive nucleic acid-based method to the detection and quantitation of Y. pestis specifically in food. Five sets of primers and corresponding TaqMan dual-labelled fluorogenic hybridization probes for Y. pestis were designed and optimized for specificity testing using genomic DNA from 71 bacterial strains. Four Y. pestis -specific primer and probe sets were developed, based on the virulence plasmid targets, and used to distinguish this bacterium from the various Yersinia and other bacterial species tested. An additional primer and probe set, based on a chromosomal gene target, distinguished Y. pestis and Yersinia pseudotuberculosis from the various Yersinia and other bacterial species tested. With optimized conditions, the quantitative detection limit of the probes for Y. pestis pure cultures ranged from 13 to 220 CFU. Standard curves were generated for the probes and used to determine the amplification efficiencies. The primers and probes demonstrated high amplification efficiencies, and their performance was evaluated using spiked milk and ground beef samples. The quantitative detection limit was 10(1) to 10(3) CFU/ml in milk and 10(2) to 10(5) CFU/g in ground beef without any preenrichment step. Testing the hybridization probes on food samples demonstrated the detection of Y. pestis in a foodborne application; this is the first such report, to our knowledge.
Assuntos
Contaminação de Alimentos/análise , Produtos da Carne/microbiologia , Leite/microbiologia , Reação em Cadeia da Polimerase , Yersinia pestis/isolamento & purificação , Animais , Sequência de Bases , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Primers do DNA , Sondas de DNA , DNA Bacteriano/análise , Amplificação de Genes , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Especificidade da Espécie , Yersinia pseudotuberculosis/isolamento & purificaçãoRESUMO
OBJECTIVE: To determine whether a combination modified-live bovine respiratory syncytial virus (BRSV) vaccine can stimulate protective immunity in young BRSV-seropositive calves following intranasal (IN) administration. DESIGN: Controlled challenge study. ANIMALS: 66 Holstein bull calves, 3 to 8 days old. PROCEDURES: In experiment 1, BRSV-seropositive and -seronegative calves were vaccinated IN with a commercially available combination modified-live virus vaccine formulated for SC administration; calves underwent BRSV challenge 4.5 months later. In experiment 2, BRSV-seronegative calves were vaccinated IN or SC (to examine the effect of route of administration) with the same combination vaccine that instead had a 1/100 dose of BRSV (to examine the effect of dose); calves underwent BRSV challenge 21 days later. RESULTS: In experiment 1, BRSV challenge resulted in severe respiratory tract disease with low arterial partial pressures of oxygen and lung lesions in most calves from all groups. Maximum change in rectal temperature was significantly greater in seropositive IN vaccinated calves, compared with seronegative IN vaccinated and seropositive control calves. Number of days of BRSV shedding was significantly lower in seronegative IN vaccinated calves than in seropositive IN vaccinated and seropositive control calves. In experiment 2, maximum change in rectal temperature was significantly greater in seronegative control calves, compared with seronegative IN and SC vaccinated calves. Shedding of BRSV was significantly reduced in seronegative IN and SC vaccinated calves, compared with control calves; also, lung lesions were reduced in seronegative IN and SC vaccinated calves. CONCLUSIONS AND CLINICAL RELEVANCE: Maternal antibodies may inhibit priming of protective responses by IN delivered BRSV vaccines.
Assuntos
Doenças dos Bovinos/prevenção & controle , Infecções por Vírus Respiratório Sincicial/veterinária , Vírus Sincicial Respiratório Bovino , Vacinas Virais/imunologia , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/virologia , Pulmão/patologia , Masculino , Nariz/virologia , Pneumonia Viral/patologia , Pneumonia Viral/veterinária , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas Virais/administração & dosagem , Eliminação de Partículas ViraisRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Antimicrobial resistance (AMR) has important implications for the continued use of antibiotics to control infectious diseases in both beef cattle and humans. AMR along the One Health continuum of the beef production system is largely unknown. Here, whole genomes of presumptive extended-spectrum ß-lactamase E. coli (ESBL-EC) from cattle feces (n = 40), feedlot catch basins (n = 42), surrounding streams (n = 21), a beef processing plant (n = 4), municipal sewage (n = 30), and clinical patients (n = 25) are described. ESBL-EC were isolated from ceftriaxone selective plates and subcultured on ampicillin selective plates. Agreement of genotype-phenotype prediction of AMR ranged from 93.2% for ampicillin to 100% for neomycin, trimethoprim/sulfamethoxazole, and enrofloxacin resistance. Overall, ß-lactam (100%; blaEC, blaTEM-1, blaSHV, blaOXA, blaCTX-M-), tetracycline (90.1%; tet(A), tet(B)) and folate synthesis (sul2) antimicrobial resistance genes (ARGs) were most prevalent. The ARGs tet(C), tet(M), tet(32), blaCTX-M-1, blaCTX-M-14, blaOXA-1, dfrA18, dfrA19, catB3, and catB4 were exclusive to human sources, while blaTEM-150, blaSHV-11-12, dfrA12, cmlA1, and cmlA5 were exclusive to beef cattle sources. Frequently encountered virulence factors across all sources included adhesion and type II and III secretion systems, while IncFIB(AP001918) and IncFII plasmids were also common. Specificity and prevalence of ARGs between cattle-sourced and human-sourced presumptive ESBL-EC likely reflect differences in antimicrobial use in cattle and humans. Comparative genomics revealed phylogenetically distinct clusters for isolates from human vs. cattle sources, implying that human infections caused by ESBL-EC in this region might not originate from beef production sources.
RESUMO
For a One-Health investigation of antimicrobial resistance (AMR) in Enterococcus spp., isolates from humans and beef cattle along with abattoirs, manured fields, natural streams, and wastewater from both urban and cattle feedlot sources were collected over two years. Species identification of Enterococcus revealed distinct associations across the continuum. Of the 8430 isolates collected, Enterococcus faecium and Enterococcus faecalis were the main species in urban wastewater (90%) and clinical human isolates (99%); Enterococcus hirae predominated in cattle (92%) and feedlot catch-basins (60%), whereas natural streams harbored environmental Enterococcus spp. Whole-genome sequencing of E. faecalis (n = 366 isolates) and E. faecium (n = 342 isolates), revealed source clustering of isolates, indicative of distinct adaptation to their respective environments. Phenotypic resistance to tetracyclines and macrolides encoded by tet(M) and erm(B) respectively, was prevalent among Enterococcus spp. regardless of source. For E. faecium from cattle, resistance to ß-lactams and quinolones was observed among 3% and 8% of isolates respectively, compared to 76% and 70% of human clinical isolates. Clinical vancomycin-resistant E. faecium exhibited high rates of multi-drug resistance, with resistance to all ß-lactam, macrolides, and quinolones tested. Differences in the AMR profiles among isolates reflected antimicrobial use practices in each sector of the One-Health continuum.
Assuntos
Antibacterianos/farmacologia , Enterococcus/patogenicidade , Farmacorresistência Bacteriana/genética , Enterococcus/efeitos dos fármacos , Enterococcus/genética , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidade , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Enterococcus faecium/patogenicidade , Humanos , Macrolídeos/farmacologia , Filogenia , Quinolonas/farmacologia , Tetraciclinas/farmacologia , Virulência , Sequenciamento Completo do Genoma , Resistência beta-Lactâmica/genéticaRESUMO
OBJECTIVE: To determine whether a combination viral vaccine containing a modified-live bovine herpesvirus-1 (BHV-1) would protect calves from infection with virulent field strains of BHV-1 for weeks or months after vaccination. DESIGN: Randomized controlled trial, performed in 2 replicates. ANIMALS: 63 weaned 4- to 6-month-old crossbred beef calves seronegative for antibody against BHV-1. PROCEDURES: Calves were randomly allocated to 1 of 2 treatment groups. Control calves (n = 10/replicate) received a combination modified-live mixed viral vaccine without BHV-1, and treatment calves (20 and 23/replicate) received a combination modified-live mixed viral vaccine containing BHV-1. Each group was challenged via aerosol with 1 of 2 field strains of BHV-1, 30 days after vaccination in replicate 1 and 97 days after vaccination in replicate 2. After challenge, calves were commingled in 1 drylot pen. Clinical signs, immune responses, and nasal shedding of virus were monitored for 10 days after challenge, after which the calves were euthanatized and tracheal lesions were assessed. RESULTS: Vaccination stimulated production of BHV-1-specific IgG antibody that cross-neutralized several field and laboratory strains of BHV-1. Challenge with both field strains of BHV-1 resulted in moderate to severe respiratory tract disease in control calves. Treatment calves had significantly fewer signs of clinical disease, shed less BHV-1, had less or no weight loss after challenge, and had fewer tracheal lesions than control calves for at least 97 days after vaccination. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of the combination modified-live BHV-1 vaccine yielded significant disease-sparing effects in calves experimentally infected with virulent field strains of BHV-1.
Assuntos
Herpesvirus Bovino 1/classificação , Herpesvirus Bovino 1/imunologia , Rinotraqueíte Infecciosa Bovina/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Bovinos , DNA Viral , Fatores de Tempo , Proteínas Virais , Eliminação de Partículas ViraisRESUMO
Using a combination of Illumina paired-end sequencing, Pacific Biosciences RS II sequencing, and OpGen Argus whole-genome optical mapping, we report here the first complete genome sequence of Yersinia massiliensis The completed genome consists of a 4.99-Mb chromosome, a 121-kb megaplasmid, and a 57-kb plasmid.
RESUMO
Livestock wastewater lagoons represent important environmental reservoirs of antibiotic resistance genes (ARGs), although factors contributing to their proliferation within these reservoirs remain poorly understood. Here, we characterized Escherichia coli from feedlot cattle feces and associated wastewater lagoons using CRISPR1 subtyping, and demonstrated that while generic E. coli were genetically diverse, populations were dominated by several 'feedlot-adapted' CRISPR types (CTs) that were widely distributed throughout the feedlot. Moreover, E. coli bearing beta-lactamase genes, which confer reduced susceptibility to third-generation cephalosporin's, predominantly belonged to these feedlot-adapted CTs. Remarkably, the genomic region containing the CRISPR1 allele was more frequently subject to genetic exchange among wastewater isolates compared to fecal isolates, implicating this region in environmental adaptation. This allele is proximal to the mutS-rpoS-nlpD region, which is involved in regulating recombination barriers and adaptive stress responses. There were no loss-of-function mutS or rpoS mutations or beneficial accessory genes present within the mutS-rpoS-nlpD region that would account for increased environmental fitness among feedlot-adapted isolates. However, comparative sequence analysis revealed that protein sequences within this region were conserved among most feedlot-adapted CTs, but not transient fecal CTs, and did not reflect phylogenetic relatedness, implying that adaptation to wastewater environments may be associated with genetic variation related to stress resistance. Collectively, our findings suggest adaptation of E. coli to feedlot environments may contribute to propagation of ARGs in wastewater lagoons.
Assuntos
Doenças dos Bovinos/microbiologia , Resistência Microbiana a Medicamentos/genética , Escherichia coli/fisiologia , Animais , Antibacterianos , Bovinos , Fezes , Filogenia , Carne VermelhaRESUMO
Bacterial identification and typing are fixtures of microbiology laboratories and are vital aspects of our response mechanisms in the event of foodborne outbreaks and bioterrorist events. Whole genome sequencing (WGS) is leading the way in terms of expanding our ability to identify and characterize bacteria through the identification of subtle differences between genomes (e.g. single nucleotide polymorphisms (SNPs) and insertions/deletions). Modern high-throughput technologies such as pyrosequencing can facilitate the typing of bacteria by generating short-read sequence data of informative regions identified by WGS analyses, at a fraction of the cost of WGS. Thus, pyrosequencing systems remain a valuable asset in the laboratory today. Presented in this chapter are two methods developed in the Amoako laboratory that detail the identification and genotyping of bacterial pathogens. The first targets canonical single nucleotide polymorphisms (canSNPs) of evolutionary importance in Bacillus anthracis, the causative agent of Anthrax. The second assay detects Shiga-toxin (stx) genes, which are associated with virulence in Escherichia coli and Shigella spp., and differentiates the subtypes of stx-1 and stx-2 based on SNP loci. These rapid methods provide end users with important information regarding virulence traits as well as the evolutionary and biogeographic origin of isolates.
Assuntos
Bactérias/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Bactérias/patogenicidade , Sequência de Bases , Evolução Molecular , Genes Bacterianos , Homologia de Sequência do Ácido NucleicoRESUMO
The determination of Shiga toxin (ST) subtypes can be an important element in the risk characterization of foodborne ST-producing Escherichia coli (STEC) isolates for making risk management decisions. ST subtyping methods include PCR techniques based on electrophoretic or pyrosequencing analysis of amplicons and in silico techniques based on whole genome sequence analysis using algorithms that can be readily incorporated into bioinformatics analysis pipelines for characterization of isolates by their genetic composition. The choice of technique will depend on the performance characteristics of the method and an individual laboratory's access to specialized equipment or personnel. We developed two whole genome sequence-based ST subtyping tools: (i) an in silico PCR algorithm requiring genome assembly to replicate a reference PCR-based method developed by the Statens Serum Institut (SSI) and (ii) an assembly-independent routine in which raw sequencing results are mapped to a database of known ST subtype sequence variants (V-Typer). These tools were evaluated alongside the SSI reference PCR method and a recently described PCR-based pyrosequencing technique. The V-Typer method results corresponded closely with the reference method in the analysis of 67 STEC cultures obtained from a World Health Organization National Reference Laboratory. In contrast, the in silico PCR method failed to detect ST subtypes in several cases, a result which we attribute to assembly-induced errors typically encountered with repetitive gene sequences. The V-Typer can be readily integrated into bioinformatics protocols used in the identification and characterization of foodborne STEC isolates.
Assuntos
Infecções por Escherichia coli/diagnóstico , Toxina Shiga/genética , Proteínas de Escherichia coli/genética , Genômica , Humanos , Toxina Shiga I/genética , Toxina Shiga II/genética , Escherichia coli Shiga Toxigênica/isolamento & purificaçãoRESUMO
Here, we report the first draft genome sequence of Enterococcus thailandicus isolated from the feces of feedlot cattle in Southern Alberta.
RESUMO
Shiga toxin (stx)-producing Escherichia coli (STEC) contamination in food and water is one of the most recognized concerns and a major financial burden in human hygiene control worldwide. Rapid and highly reliable methods of detecting and identifying STEC causing gastroenteric illnesses are crucial to prevent foodborne outbreaks. A number of tests have been developed and commercialized to detect STEC using molecular microbiology techniques. Most of these are designed to identify virulence factors such as Shiga toxin and intimin as well as E. coli O and H antigen serotype specific genes. In order to screen pathogenic STEC without relying on O:H serotyping, we developed a rapid detection and genotyping assay for STEC virulence genes using a PCR-pyrosequencing application. We adapted the PyroMark Q24 Pyrosequencing platform for subtyping 4 major virulence genes, Shiga toxin 1 and 2 (stx1 and stx2), intimin (eae) and O157-antigen gene cluster target rfbE, using Single Nucleotide Polymorphism (SNP) analysis. A total of 224 E. coli strains including isolates from Canadian environment, food and clinical cases were examined. Based on the multiple alignment analysis of 30-80 base nucleotide pyrogram reads, three alleles of the Shiga toxin 1a gene (stx1a) (stx1a-I, stx1a-II, stx1a-III) were identified. Results of the stx1, stx2, eae and rfbE genotyping revealed that each group of O:H serotype shares distinctive characteristics that could be associated with the virulence of each genotype. O157:H7/NM carries stx1a-II (94%), stx2a (82%), λ/γ1-eae (100%) and rfbE type-H7/NM (100%). Whereas isolates of the "Top-6" serotypes (O26, O45, O103, O111, O121, O145) had a high incidence of stx1a-I (90%) and stx2a (100%). stx1a-III (60%) was only observed in non Top-7 (Top-6 plus O157) STEC and Shigella spp. The entire assay, from extracting DNA from colonies on a plate to the generation of sequence information, can be completed in 5h. The method of profiling these 4 STEC pathogenic genotypes as demonstrated in this paper is rapid, easily performed, informative and cost-effective, and thus has a potential to be deployed in the food industry for the routine screening of potentially pathogenic STEC isolates.
Assuntos
Adesinas Bacterianas/genética , Técnicas Bacteriológicas/métodos , Carboidratos Epimerases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/classificação , Escherichia coli/genética , Técnicas de Genotipagem/métodos , Toxina Shiga/genética , Transaminases/genética , Canadá , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Genótipo , Humanos , Tipagem Molecular/métodos , Análise de Sequência de DNA/métodos , Fatores de TempoRESUMO
Bacillus anthracis, the causative agent of anthrax, has the capacity to form highly resilient spores as part of its life cycle. The potential for the dissemination of these spores using food as a vehicle is a huge public health concern and, hence, requires the development of a foodborne bioterrorism response approach. In this work, we address a critical gap in food biodefense by presenting a novel, combined, sequential method involving the use of real-time PCR and pyrosequencing for the rapid, specific detection of B. anthracis spores in three food matrices: milk, apple juice, and bottled water. The food samples were experimentally inoculated with 40 CFU ml(-1), and DNA was extracted from the spores and analyzed after immunomagnetic separation. Applying the combination of multiplex real-time PCR and pyrosequencing, we successfully detected the presence of targets on both of the virulence plasmids and the chromosome. The results showed that DNA amplicons generated from a five-target multiplexed real-time PCR detection using biotin-labeled primers can be used for single-plex pyrosequencing detection. The combined use of multiplexed real-time PCR and pyrosequencing is a novel, rapid detection method for B. anthracis from food and provides a tool for accurate, quantitative identification with potential biodefense applications.