Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
PLoS Biol ; 19(2): e3001091, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33630831

RESUMO

The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science.


Assuntos
Vacinas contra COVID-19 , COVID-19/diagnóstico , COVID-19/virologia , Genética Reversa , SARS-CoV-2/genética , Células A549 , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Chlorocebus aethiops , Códon , Humanos , Hidrazonas/farmacologia , Camundongos , Morfolinas/farmacologia , Fases de Leitura Aberta , Plasmídeos/genética , Pirimidinas/farmacologia , Serina Endopeptidases/metabolismo , Células Vero , Proteínas Virais/metabolismo
2.
J Infect Dis ; 224(1): 31-38, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33754149

RESUMO

Virus-virus interactions influence the epidemiology of respiratory infections. However, the impact of viruses causing upper respiratory infections on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and transmission is currently unknown. Human rhinoviruses cause the common cold and are the most prevalent respiratory viruses of humans. Interactions between rhinoviruses and cocirculating respiratory viruses have been shown to shape virus epidemiology at the individual host and population level. Here, we examined the replication kinetics of SARS-CoV-2 in the human respiratory epithelium in the presence or absence of rhinovirus. We show that human rhinovirus triggers an interferon response that blocks SARS-CoV-2 replication. Mathematical simulations show that this virus-virus interaction is likely to have a population-wide effect as an increasing prevalence of rhinovirus will reduce the number of new coronavirus disease 2019 cases.


Assuntos
Antibiose , COVID-19/virologia , Coinfecção , Infecções por Picornaviridae/virologia , Rhinovirus/fisiologia , SARS-CoV-2/fisiologia , Replicação Viral , COVID-19/epidemiologia , Linhagem Celular , Células Cultivadas , Imunofluorescência , Humanos , Mucosa Respiratória/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA