Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(50): e2308832120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048461

RESUMO

Building conditions, outdoor climate, and human behavior influence residential concentrations of fine particulate matter (PM2.5). To study PM2.5 spatiotemporal variability in residences, we acquired paired indoor and outdoor PM2.5 measurements at 3,977 residences across the United States totaling >10,000 monitor-years of time-resolved data (10-min resolution) from the PurpleAir network. Time-series analysis and statistical modeling apportioned residential PM2.5 concentrations to outdoor sources (median residential contribution = 52% of total, coefficient of variation = 69%), episodic indoor emission events such as cooking (28%, CV = 210%) and persistent indoor sources (20%, CV = 112%). Residences in the temperate marine climate zone experienced higher infiltration factors, consistent with expectations for more time with open windows in milder climates. Likewise, for all climate zones, infiltration factors were highest in summer and lowest in winter, decreasing by approximately half in most climate zones. Large outdoor-indoor temperature differences were associated with lower infiltration factors, suggesting particle losses from active filtration occurred during heating and cooling. Absolute contributions from both outdoor and indoor sources increased during wildfire events. Infiltration factors decreased during periods of high outdoor PM2.5, such as during wildfires, reducing potential exposures from outdoor-origin particles but increasing potential exposures to indoor-origin particles. Time-of-day analysis reveals that episodic emission events are most frequent during mealtimes as well as on holidays (Thanksgiving and Christmas), indicating that cooking-related activities are a strong episodic emission source of indoor PM2.5 in monitored residences.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Crowdsourcing , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Material Particulado/análise , Tamanho da Partícula
2.
Environ Sci Technol ; 58(18): 7958-7967, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656997

RESUMO

Because humans spend about one-third of their time asleep in their bedrooms and are themselves emission sources of volatile organic compounds (VOCs), it is important to specifically characterize the composition of the bedroom air that they experience during sleep. This work uses real-time indoor and outdoor measurements of volatile organic compounds (VOCs) to examine concentration enhancements in bedroom air during sleep and to calculate VOC emission rates associated with sleeping occupants. Gaseous VOCs were measured with proton-transfer reaction time-of-flight mass spectrometry during a multiweek residential monitoring campaign under normal occupancy conditions. Results indicate high emissions of nearly 100 VOCs and other species in the bedroom during sleeping periods as compared to the levels in other rooms of the same residence. Air change rates for the bedroom and, correspondingly, emission rates of sleeping-associated VOCs were determined for two bounding conditions: (1) air exchange between the bedroom and outdoors only and (2) air exchange between the bedroom and other indoor spaces only (as represented by measurements in the kitchen). VOCs from skin oil oxidation and personal care products were present, revealing that many emission pathways can be important occupant-associated emission factors affecting bedroom air composition in addition to direct emissions from building materials and furnishings.


Assuntos
Poluição do Ar em Ambientes Fechados , Sono , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Humanos , Monitoramento Ambiental , Habitação , Poluentes Atmosféricos/análise
3.
Environ Sci Technol ; 58(11): 5047-5057, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437595

RESUMO

The chemical composition of incense-generated organic aerosol in residential indoor air has received limited attention in Western literature. In this study, we conducted incense burning experiments in a single-family California residence during vacancy. We report the chemical composition of organic fine particulate matter (PM2.5), associated emission factors (EFs), and gas-particle phase partitioning for indoor semivolatile organic compounds (SVOCs). Speciated organic PM2.5 measurements were made using two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC×GC-HR-ToF-MS) and semivolatile thermal desorption aerosol gas chromatography (SV-TAG). Organic PM2.5 EFs ranged from 7 to 31 mg g-1 for burned incense and were largely comprised of polar and oxygenated species, with high abundance of biomass-burning tracers such as levoglucosan. Differences in PM2.5 EFs and chemical profiles were observed in relation to the type of incense burned. Nine indoor SVOCs considered to originate from sources other than incense combustion were enhanced during incense events. Time-resolved concentrations of these SVOCs correlated well with PM2.5 mass (R2 > 0.75), suggesting that low-volatility SVOCs such as bis(2-ethylhexyl)phthalate and butyl benzyl phthalate partitioned to incense-generated PM2.5. Both direct emissions and enhanced partitioning of low-volatility indoor SVOCs to incense-generated PM2.5 can influence inhalation exposures during and after indoor incense use.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , California , Aerossóis/análise
4.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34465624

RESUMO

Wildfires have become an important source of particulate matter (PM2.5 < 2.5-µm diameter), leading to unhealthy air quality index occurrences in the western United States. Since people mainly shelter indoors during wildfire smoke events, the infiltration of wildfire PM2.5 into indoor environments is a key determinant of human exposure and is potentially controllable with appropriate awareness, infrastructure investment, and public education. Using time-resolved observations outside and inside more than 1,400 buildings from the crowdsourced PurpleAir sensor network in California, we found that the geometric mean infiltration ratios (indoor PM2.5 of outdoor origin/outdoor PM2.5) were reduced from 0.4 during non-fire days to 0.2 during wildfire days. Even with reduced infiltration, the mean indoor concentration of PM2.5 nearly tripled during wildfire events, with a lower infiltration in newer buildings and those utilizing air conditioning or filtration.


Assuntos
Poluição do Ar em Ambientes Fechados , Crowdsourcing , Exposição Ambiental , Incêndios , Material Particulado/análise , Fumaça , California , Monitoramento Ambiental/métodos , Humanos
5.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526680

RESUMO

Outdoor ozone transported indoors initiates oxidative chemistry, forming volatile organic products. The influence of ozone chemistry on indoor air composition has not been directly quantified in normally occupied residences. Here, we explore indoor ozone chemistry in a house in California with two adult inhabitants. We utilize space- and time-resolved measurements of ozone and volatile organic compounds (VOCs) acquired over an 8-wk summer campaign. Despite overall low indoor ozone concentrations (mean value of 4.3 ppb) and a relatively low indoor ozone decay constant (1.3 h-1), we identified multiple VOCs exhibiting clear contributions from ozone-initiated chemistry indoors. These chemicals include 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), nonenal, and C8-C12 saturated aldehydes, which are among the commonly reported products from laboratory studies of ozone interactions with indoor surfaces and with human skin lipids. These VOCs together accounted for ≥12% molecular yield with respect to house-wide consumed ozone, with the highest net product yield for nonanal (≥3.5%), followed by 6-MHO (2.7%) and 4-OPA (2.6%). Although 6-MHO and 4-OPA are prominent ozonolysis products of skin lipids (specifically squalene), ozone reaction with the body envelopes of the two occupants in this house are insufficient to explain the observed yields. Relatedly, we observed that ozone-driven chemistry continued to produce 6-MHO and 4-OPA even after the occupants had been away from the house for 5 d. These observations provide evidence that skin lipids transferred to indoor surfaces made substantial contributions to ozone reactivity in the studied house.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental , Ozônio/química , Compostos Orgânicos Voláteis/química , Poluentes Atmosféricos/isolamento & purificação , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Aldeídos/química , California/epidemiologia , Humanos , Cetonas/química , Lipídeos/química , Oxirredução/efeitos dos fármacos , Ozônio/isolamento & purificação , Ozônio/metabolismo , Esqualeno/química , Compostos Orgânicos Voláteis/isolamento & purificação
6.
Environ Sci Technol ; 57(8): 3260-3269, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36796310

RESUMO

Semivolatile organic compounds (SVOCs) represent an important class of indoor pollutants. The partitioning of SVOCs between airborne particles and the adjacent air influences human exposure and uptake. Presently, little direct experimental evidence exists about the influence of indoor particle pollution on the gas-particle phase partitioning of indoor SVOCs. In this study, we present time-resolved gas- and particle-phase distribution data for indoor SVOCs in a normally occupied residence using semivolatile thermal desorption aerosol gas chromatography. Although SVOCs in indoor air are found mostly in the gas phase, we show that indoor particles from cooking, candle use, and outdoor particle infiltration strongly affect the gas-particle phase distribution of specific indoor SVOCs. From gas- and particle-phase measurements of SVOCs spanning a range of chemical functionalities (alkanes, alcohols, alkanoic acids, and phthalates) and volatilities (vapor pressures from 10-13 to 10-4 atm), we find that the chemical composition of the airborne particles influences the partitioning of individual SVOC species. During candle burning, the enhanced partitioning of gas-phase SVOCs to indoor particles not only affects the particle composition but also enhances surface off-gassing, thereby increasing the total airborne concentration of specific SVOCs, including diethylhexyl phthalate.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Dietilexilftalato , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Dietilexilftalato/análise , Poluentes Atmosféricos/análise , Gases/análise , Culinária
7.
Environ Sci Technol ; 57(41): 15533-15545, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37791848

RESUMO

Los Angeles is a major hotspot for ozone and particulate matter air pollution in the United States. Ozone and PM2.5 in this region have not improved substantially for the past decade, despite a reduction in vehicular emissions of their precursors, NOx and volatile organic compounds (VOCs). This reduction in "traditional" sources has made the current emission mixture of air pollutant precursors more uncertain. To map and quantify emissions of a wide range of VOCs in this urban area, we performed airborne eddy covariance measurements with wavelet analysis. VOC fluxes measured include tracers for source categories, such as traffic, vegetation, and volatile chemical products (VCPs). Mass fluxes were dominated by oxygenated VOCs, with ethanol contributing ∼29% of the total. In terms of OH reactivity and aerosol formation potential, terpenoids contributed more than half. Observed fluxes were compared with two commonly used emission inventories: the California Air Resources Board inventory and the combination of the Biogenic Emission Inventory System with the Fuel-based Inventory of Vehicle Emissions combined with Volatile Chemical Products (FIVE-VCP). The comparison shows mismatches regarding the amount, spatial distribution, and weekend effects of observed VOC emissions with the inventories. The agreement was best for typical transportation related VOCs, while discrepancies were larger for biogenic and VCP-related VOCs.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Estados Unidos , Compostos Orgânicos Voláteis/análise , Los Angeles , Poluentes Atmosféricos/análise , Material Particulado/análise , Emissões de Veículos/análise , Ozônio/análise , Monitoramento Ambiental , China
8.
Environ Sci Technol ; 57(48): 19519-19531, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000445

RESUMO

State inventories indicate that dairy operations account for nearly half of California's methane budget. Recent analyses suggest, however, that these emissions may be underestimated, complicating efforts to develop emission reduction strategies. Here, we report estimates of dairy methane emissions in the southern San Joaquin Valley (SJV) of California in June 2021 using airborne flux measurements. We find average dairy methane fluxes of 512 ± 178 mg m-2 h-1 from a region of 300+ dairies near Visalia, CA using a combination of eddy covariance and mass balance-based techniques, corresponding to 118 ± 41 kg dairy-1 h-1. These values estimated during our June campaign are 39 ± 48% larger than annual average estimates from the recently developed VISTA-CA inventory. We observed notable increases in emissions with temperature. Our estimates align well with inventory predictions when parametrizations for the temperature dependence of emissions are applied. Our measurements further demonstrate that the VISTA-CA emission inventory is considerably more accurate than the EPA GHG-I inventory in this region. Source apportionment analyses confirm that dairy operations produce the majority of methane emissions in the southern SJV (∼65%). Fugitive oil and gas (O&G) sources account for the remaining ∼35%. Our results support the accuracy of the process-based models used to develop dairy emission inventories and highlight the need for additional investigation of the meteorological dependence of these emissions.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Metano/análise , Meio Ambiente , Gás Natural/análise , California
9.
Environ Sci Technol ; 57(2): 896-908, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36603843

RESUMO

The hydroxyl radical (OH) is the dominant oxidant in the outdoor environment, controlling the lifetimes of volatile organic compounds (VOCs) and contributing to the growth of secondary organic aerosols. Despite its importance outdoors, there have been relatively few measurements of the OH radical in indoor environments. During the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, elevated concentrations of OH were observed near a window during cooking events, in addition to elevated mixing ratios of nitrous acid (HONO), VOCs, and nitrogen oxides (NOX). Particularly high concentrations were measured during the preparation of a traditional American Thanksgiving dinner, which required the use of a gas stove and oven almost continually for 6 h. A zero-dimensional chemical model underpredicted the measured OH concentrations even during periods when direct sunlight illuminated the area near the window, which increases the rate of OH production by photolysis of HONO. Interferences with measurements of nitrogen dioxide (NO2) and ozone (O3) suggest that unmeasured photolytic VOCs were emitted during cooking events. The addition of a VOC that photolyzes to produce peroxy radicals (RO2), similar to pyruvic acid, into the model results in better agreement with the OH measurements. These results highlight our incomplete understanding of the nature of oxidation in indoor environments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Radical Hidroxila/análise , Radical Hidroxila/química , Fotólise , Poluição do Ar em Ambientes Fechados/análise , Óxidos de Nitrogênio/análise , Ozônio/análise , Culinária , Ácido Nitroso/análise , Ácido Nitroso/química , Poluentes Atmosféricos/análise
10.
Environ Sci Technol ; 57(15): 6263-6272, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37011031

RESUMO

Urbanization and fires perturb the quantities and composition of fine organic aerosol in the central Amazon, with ramifications for radiative forcing and public health. These disturbances include not only direct emissions of particulates and secondary organic aerosol (SOA) precursors but also changes in the pathways through which biogenic precursors form SOA. The composition of ambient organic aerosol is complex and incompletely characterized, encompassing millions of potential structures relatively few of which have been synthesized and characterized. Through analysis of submicron aerosol samples from the Green Ocean Amazon (GoAmazon2014/5) field campaign by two-dimensional gas chromatography coupled with machine learning, ∼1300 unique compounds were traced and characterized over two seasons. Fires and urban emissions produced chemically and interseasonally distinct impacts on product signatures, with only ∼50% of compounds observed in both seasons. Seasonally unique populations point to the importance of aqueous processing in Amazonian aerosol aging, but further mechanistic insights are impeded by limited product identity knowledge. Less than 10% of compounds were identifiable at an isomer-specific level. Overall, the findings (i) provide compositional characterization of anthropogenic influence on submicron organic aerosol in the Amazon, (ii) identify key season-to-season differences in chemical signatures, and (iii) highlight high-priority knowledge gaps in current speciated knowledge.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Estações do Ano , Aerossóis/análise , Poeira/análise
11.
Environ Sci Technol ; 56(12): 7598-7607, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35653434

RESUMO

Isocyanic acid (HNCO) and other nitrogen-containing volatile chemicals (organic isocyanates, hydrogen cyanide, nitriles, amines, amides) were measured during the House Observation of Microbial and Environmental Chemistry (HOMEChem) campaign. The indoor HNCO mean mixing ratio was 0.14 ± 0.30 ppb (range 0.012-6.1 ppb), higher than outdoor levels (mean 0.026 ± 0.15 ppb). From the month-long study, cooking and chlorine bleach cleaning are identified as the most important human-related sources of these nitrogen-containing gases. Gas oven cooking emits more isocyanates than stovetop cooking. The emission ratios HNCO/CO (ppb/ppm) during stovetop and oven cooking (mean 0.090 and 0.30) are lower than previously reported values during biomass burning (between 0.76 and 4.6) and cigarette smoking (mean 2.7). Bleach cleaning led to an increase of the HNCO mixing ratio of a factor of 3.5 per liter of cleaning solution used; laboratory studies indicate that isocyanates arise via reaction of nitrogen-containing precursors, such as indoor dust. Partitioned in a temperature-dependent manner to indoor surface reservoirs, HNCO was present at the beginning of HOMEChem, arising from an unidentified source. HNCO levels are higher at the end of the campaign than the beginning, indicative of occupant activities such as cleaning and cooking; however the direct emissions of humans are relatively minor.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Culinária , Cianatos , Monitoramento Ambiental , Gases , Humanos , Isocianatos , Nitrogênio
12.
Environ Sci Technol ; 56(3): 1557-1567, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35037463

RESUMO

In the western United States, the number and severity of large wildfires have been growing for decades. Biomass burning (BB) is a major source of volatile organic compounds (VOCs) to the atmosphere both globally and regionally. Following emission, BB VOCs are oxidized while being transported downwind, producing ozone, secondary organic aerosols, and secondary hazardous VOCs. In this research, we measured VOCs using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) in an urban area 55-65 km downwind of the October 2017 Northern California wildfires. Nonaromatic oxygenated compounds were the dominant component of BB VOCs measured. In the smoke plumes, the VOCs account for 70-75% of the total observed organic carbon, with the remainder being particulate matter (with a diameter of <2.5 µm, PM2.5). We show that the correlation of VOCs with furan (primary BB VOC) and maleic anhydride (secondary BB VOC) can indicate the origin of the VOCs. This was further confirmed by the diurnal variations of the VOCs and their concentration-weighted trajectories. Oxidation during transport consumed highly reactive compounds including benzenoids, furanoids, and terpenoids and produced more oxygenated VOCs. Furthermore, wildfire VOCs altered the ozone formation regime and raised the O3 levels in the San Francisco Bay Area.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Incêndios Florestais , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Ozônio/análise , São Francisco
13.
Environ Sci Technol ; 56(22): 15427-15436, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327170

RESUMO

Volatile methyl siloxanes (VMS) are ubiquitous in indoor environments due to their use in personal care products. This paper builds on previous work identifying sources of VMS by synthesizing time-resolved proton-transfer reaction time-of-flight mass spectrometer VMS concentration measurements from four multiweek indoor air campaigns to elucidate emission sources and removal processes. Temporal patterns of VMS emissions display both continuous and episodic behavior, with the relative importance varying among species. We find that the cyclic siloxane D5 is consistently the most abundant VMS species, mainly attributable to personal care product use. Two other cyclic siloxanes, D3 and D4, are emitted from oven and personal care product use, with continuous sources also apparent. Two linear siloxanes, L4 and L5, are also emitted from personal care product use, with apparent additional continuous sources. We report measurements for three other organosilicon compounds found in personal care products. The primary air removal pathway of the species examined in this paper is ventilation to the outdoors, which has implications for atmospheric chemistry. The net removal rate is slower for linear siloxanes, which persist for days indoors after episodic release events. This work highlights the diversity in sources of organosilicon species and their persistence indoors.


Assuntos
Compostos de Organossilício , Siloxanas , Siloxanas/análise , Monitoramento Ambiental , Ventilação
14.
Environ Sci Technol ; 56(23): 16633-16642, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36332100

RESUMO

The organic composition of coastal sea spray aerosol is important for both atmospheric chemistry and public health but remains poorly characterized. Coastal waters contain an organic material derived from both anthropogenic processes, such as wastewater discharge, and biological processes, including biological blooms. Here, we probe the chemical composition of the organic fraction of sea spray aerosol over the course of the 2019 SeaSCAPE mesocosm experiment, in which a phytoplankton bloom was facilitated in natural coastal water from La Jolla, California. We apply untargeted two-dimensional gas chromatography to characterize submicron nascent sea spray aerosol samples, reporting ∼750 unique organic species traced over a 19 day phytoplankton bloom experiment. Categorization and quantitative compositional analysis reveal three major findings. First, anthropogenic species made up 30% of total submicron nascent sea spray aerosol organic mass under the pre-bloom condition. Second, biological activity drove large changes within the aerosolized carbon pool, decreasing the anthropogenic mass fraction by 89% and increasing the biogenic and biologically transformed fraction by a factor of 5.6. Third, biogenic marine organics are underrepresented in mass spectral databases in comparison to marine organic pollutants, with more than twice as much biogenic aerosol mass attributable to unlisted compounds.


Assuntos
Partículas e Gotas Aerossolizadas , Fitoplâncton , Aerossóis/química , Oceanos e Mares
15.
Environ Sci Technol ; 56(1): 109-118, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34910454

RESUMO

Reactive organic carbon (ROC) comprises a substantial fraction of the total atmospheric carbon budget. Emissions of ROC fuel atmospheric oxidation chemistry to produce secondary pollutants including ozone, carbon dioxide, and particulate matter. Compared to the outdoor atmosphere, the indoor organic carbon budget is comparatively understudied. We characterized indoor ROC in a test house during unoccupied, cooking, and cleaning scenarios using various online mass spectrometry and gas chromatography measurements of gaseous and particulate organics. Cooking greatly impacted indoor ROC concentrations and bulk physicochemical properties (e.g., volatility and oxidation state), while cleaning yielded relatively insubstantial changes. Additionally, cooking enhanced the reactivities of hydroxyl radicals and ozone toward indoor ROC. We observed consistently higher median ROC concentrations indoors (≥223 µg C m-3) compared to outdoors (54 µg C m-3), demonstrating that buildings can be a net source of reactive carbon to the outdoor atmosphere, following its removal by ventilation. We estimate the unoccupied test house emitted 0.7 g C day-1 from ROC to outdoors. Indoor ROC emissions may thus play an important role in air quality and secondary pollutant formation outdoors, particularly in urban and suburban areas, and indoors during the use of oxidant-generating air purifiers.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas , Material Particulado/análise
16.
Environ Sci Technol ; 56(14): 9947-9958, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35763461

RESUMO

To elucidate the seawater biological and physicochemical factors driving differences in organic composition between supermicron and submicron sea spray aerosol (SSAsuper and SSAsub), carbon isotopic composition (δ13C) measurements were performed on size-segregated, nascent SSA collected during a phytoplankton bloom mesocosm experiment. The δ13C measurements indicate that SSAsuper contains a mixture of particulate and dissolved organic material in the bulk seawater. After phytoplankton growth, a greater amount of freshly produced carbon was observed in SSAsuper with the proportional contribution being modulated by bacterial activity, emphasizing the importance of the microbial loop in controlling the organic composition of SSAsuper. Conversely, SSAsub exhibited no apparent relationship with biological activity but tracked closely with surface tension measurements probing the topmost ∼0.2-1.5 µm of the sea surface microlayer. This probing depth is similar to a bubble's film thickness at the ocean surface, suggesting that SSAsub organic composition may be influenced by the presence of surfactants at the air-sea interface that are transferred into SSAsub by bubble bursting. Our findings illustrate the substantial impact of seawater dynamics on the pronounced organic compositional differences between SSAsuper and SSAsub and demonstrate that these two SSA populations should be considered separately when assessing their contribution to marine aerosols and climate.


Assuntos
Partículas e Gotas Aerossolizadas , Água do Mar , Aerossóis/química , Carbono , Fitoplâncton , Água do Mar/química
17.
Environ Sci Technol ; 56(17): 12148-12157, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35952310

RESUMO

Analytical capabilities in atmospheric chemistry provide new opportunities to investigate indoor air. HOMEChem was a chemically comprehensive indoor field campaign designed to investigate how common activities, such as cooking and cleaning, impacted indoor air in a test home. We combined gas-phase chemical data of all compounds, excluding those with concentrations <1 ppt, with established databases of health effect thresholds to evaluate potential risks associated with gas-phase air contaminants and indoor activities. The chemical composition of indoor air is distinct from outdoor air, with gaseous compounds present at higher levels and greater diversity─and thus greater predicted hazard quotients─indoors than outdoors. Common household activities like cooking and cleaning induce rapid changes in indoor air composition, raising levels of multiple compounds with high risk quotients. The HOMEChem data highlight how strongly human activities influence the air we breathe in the built environment, increasing the health risk associated with exposure to air contaminants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Culinária , Monitoramento Ambiental , Gases , Humanos , Material Particulado/análise
18.
Environ Sci Technol ; 55(3): 1690-1698, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33464056

RESUMO

Squalene can react with indoor ozone to generate a series of volatile and semi-volatile organic compounds, some of which may be skin or respiratory irritants, causing adverse health effects. Better understanding of the ozone/squalene reaction and product transport characteristics is thus important. In this study, we developed a physical-chemical coupling model to describe the behavior of ozone/squalene reaction products, that is, 6-methyl-5-hepten-2-one (6-MHO) and 4-oxopentanal (4-OPA) in the gas phase and skin, by considering the chemical reaction and physical transport processes (external convection, internal diffusion, and surface uptake). Experiments without intervention were performed in a single-family house in California utilizing time- and space-resolved measurements. The key parameters in the model were extracted from 5 day data and then used to predict the behaviors in some other days. Predictions from the present model can reproduce the concentration profiles of the three compounds (ozone, 6-MHO, and 4-OPA) well (R2 = 0.82-0.89), indicating high accuracy of the model. Exposure analysis shows that the total amount of 6-MHO and 4-OPA entering the blood capillaries in 4 days can reach 14.6 and 30.1 µg, respectively. The contribution of different sinks to ozone removal in the tested realistic indoor environment was also analyzed.


Assuntos
Poluição do Ar em Ambientes Fechados , Ozônio , Compostos Orgânicos Voláteis , Poluição do Ar em Ambientes Fechados/análise , Modelos Teóricos , Ozônio/análise , Esqualeno , Compostos Orgânicos Voláteis/análise
19.
Environ Sci Technol ; 55(9): 5742-5751, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33861084

RESUMO

As stricter regulations continue to reduce vehicular emissions, other emission sources such as evaporative emissions from road building and volatile consumer products have become more important in overall pollutant forming emissions in many urban areas. Emission regulations have historically targeted volatile organic compounds (VOCs) to reduce ozone, but intermediate volatility organic compounds (IVOCs) also contribute to ozone formation and the formation of secondary organic aerosol (SOA) that often dominates fine particulate matter. Emission rates and pollutant formation from IVOCs are not well constrained in current inventories and models. This study uses diesel fuel as a representative IVOC mixture in evaporation tests performed in a wind tunnel under varying wind speeds and liquid diesel temperatures. Comprehensive composition measurements guided the development of a model to determine rates of evaporation and estimate pollutant production. Results show that reducing IVOC emissions can result in significant reductions in ozone formation, in addition to the expected reductions in SOA formation, and that IVOC emissions can continue over the course of a month. Ozone formation from IVOC emissions is equal to that from VOCs after 3 days of evaporation at 0.65 g-ozone/g-diesel released. SOA formation is dominated by IVOCs, reaching 0.2 g-SOA/g-diesel released after 30 days.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Ozônio , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , Volatilização
20.
Environ Sci Technol ; 55(10): 6740-6751, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33945266

RESUMO

Time spent in residences substantially contributes to human exposure to volatile organic compounds (VOCs). Such exposures have been difficult to study deeply, in part because VOC concentrations and indoor occupancy vary rapidly. Using a fast-response online mass spectrometer, we report time-resolved exposures from multi-season sampling of more than 200 VOCs in two California residences. Chemical-specific source apportionment revealed that time-averaged exposures for most VOCs were mainly attributable to continuous indoor emissions from buildings and their static contents. Also contributing to exposures were occupant-related activities, such as cooking, and outdoor-to-indoor transport. Health risk assessments are possible for a subset of observed VOCs. Acrolein, acetaldehyde, and acrylic acid concentrations were above chronic advisory health guidelines, whereas exposures for other assessable species were typically well below the guideline levels. Studied residences were built in the mid-20th century, indicating that VOC emissions even from older buildings and their contents can substantially contribute to occupant exposures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , California , Monitoramento Ambiental , Habitação , Humanos , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA