Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 34(32): 9540-9547, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30028143

RESUMO

Saponins are a large group of glycosides present in many plant species. They exhibit high surface activity, which arises from a hydrophobic scaffold of triterpenoid or steroid groups and attached hydrophilic saccharide chains. The diversity of molecular structures, present in various plants, gives rise to a rich variety of physicochemical properties and biological activity and results in a wide range of applications in foods, cosmetics, medicine, and several other industrial sectors. Saponin surface activity is a key property in such applications and here the adsorption of three triterpenoid saponins, escin, tea saponins, and Quillaja saponin, is studied at the air-water interface by neutron reflectivity and surface tension. All these saponins form adsorption layers with very high surface visco-elasticity. The structure of the adsorbed layers has been determined from the neutron reflectivity data and is related to the molecular structure of the saponins. The results indicate that the structure of the saturated adsorption layers is governed by densely packed hydrophilic saccharide groups. The tight molecular packing and the strong hydrogen bonds between the neighboring saccharide groups are the main reasons for the unusual rheological properties of the saponin adsorption layers.


Assuntos
Saponinas/química , Tensoativos/química , Adsorção , Ar , Escina/química , Difração de Nêutrons , Quillaja/química , Saponinas de Quilaia/química , Tensão Superficial , Chá/química , Água/química
2.
Langmuir ; 28(2): 1115-26, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22168570

RESUMO

We study the effect of two cationic polymers, with trade names Jaguar C13s and Merquat 100, on the rheological properties of foams stabilized with a mixture of anionic and zwitterionic surfactants (sodium lauryloxyethylene sulfate and cocoamidopropyl betaine). A series of five cosurfactants are used to compare the effect of these polymers on foaming systems with high and low surface dilatational moduli. The experiments revealed that the addition of Jaguar to the foaming solutions leads to (1) a significant increase of the foam yield stress for all systems studied, (2) the presence of consecutive maximum and minimum in the stress vs shear rate rheological curve for foams stabilized by cosurfactants with a high surface modulus (these systems cannot be described by the Herschel-Bulkley model anymore), and (3) the presence of significant foam-wall yield stress for all foaming solutions. These effects are explained with the formation of polymer bridges between the neighboring bubbles in slowly sheared foams (for inside foam friction) and between the bubbles and the confining solid wall (for foam-wall friction). Upon addition of 150 mM NaCl, the effect of Jaguar disappears. The addition of Merquat does not noticeably affect any of the foam rheological properties studied. Optical observations of foam films, formed from all these systems, show a very good correlation between the polymer bridging of the foam film surfaces and the strong polymer effect on the foam rheological properties. The obtained results demonstrate that the bubble-bubble attraction can be used for efficient control of the foam yield stress and foam-wall yield stress, without significantly affecting the viscous friction in sheared foams.

3.
Adv Colloid Interface Sci ; 276: 102084, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31884021

RESUMO

In this paper we study the main surface characteristics which control the foamability of solutions of various surfactants. Systematic series of experiments with anionic, cationic and nonionic surfactants with different head groups and chain lengths are performed in a wide concentration range, from 0.001 mM to 100 mM. The electrolyte (NaCl) concentration is also varied from 0 up to 100 mM. For all surfactants studied, three regions in the dependence of the foamability, VA, on the logarithm of surfactant concentration, lgCS, are observed. In Region 1, VA is very low and depends weakly on CS. In Region 2, VA increases steeply with CS. In Region 3, VA reaches a plateau. To analyse these results, the dynamic and equilibrium surface tensions of the foamed solutions are measured. A key new element in our interpretation of the foaming data is that we use the surface tension measurements to determine the dependence of the main surface properties (surfactant adsorption, surface coverage and surface elasticity) on the surface age of the bubbles. In this way we interpret the results from the foaming tests by considering the properties of the dynamic adsorption layers, formed during foaming. The performed analysis reveals a large qualitative difference between the nonionic and ionic surfactants with respect to their foaming profiles. The data for the nonionic and ionic surfactants merge around two master curves when plotted as a function of the surface coverage, the surface mobility factor, or the Gibbs elasticity of the dynamic adsorption layers. This difference between the ionic and nonionic surfactants is explained with the important contribution of the electrostatic repulsion between the foam film surfaces for the ionic surfactants which stabilizes the dynamic foam films even at moderate surface coverage and at relatively high ionic strength (up to 100 mM). In contrast, the films formed from solutions of nonionic surfactants are stabilized via steric repulsion which becomes sufficiently high to prevent bubble coalescence only at rather high surface coverage (> 90%) which corresponds to related high Gibbs elasticity (> 150 mN/m) and low surface mobility of the dynamic adsorption layers. Mechanistic explanations of all observed trends are provided and some important similarities and differences with the process of emulsification are outlined.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(5 Pt 1): 051405, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19113128

RESUMO

This experimental study is focused on the process of bubble breakup in steadily sheared foams, at constant shear rate or constant shear stress. Two different types of surfactants were used and glycerol was added to the aqueous phase, to check how the bubble breakup depends on the surface modulus and on bulk viscosity of the foaming solutions. The experiments show that bubble breakup in foams occurs above a well defined critical dimensionless stress, tau[over]CR identical with(tauCRR/sigma) approximately 0.40, which is independent of surfactant used, solution viscosity, and bubble volume fraction (varied between 92 and 98%). Here tauCR is the dimensional shear stress, above which a bubble with radius R and surface tension sigma would break in sheared foam. The value of the critical stress experimentally found by us tau[over]CR approximately 0.40, is about two orders of magnitude lower than the critical stress for breakup of single bubbles in sheared Newtonian liquids, tau[over]CR approximately 25. This large difference in the critical stress is explained by the strong interaction between neighboring bubbles in densely populated foams, which facilitates bubble subdivision into smaller bubbles. A strong effect of bubble polydispersity on the kinetics of bubble breakup (at similar mean bubble size) was observed and explained. Experiments were also performed with hexadecane-in-water emulsions of drop volume fraction 83%

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(1 Pt 1): 011405, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18763954

RESUMO

In a recent Letter [N. D. Denkov, Phys. Rev. Lett. 100, 138301 (2008)] we calculated theoretically the macroscopic viscous stress of steadily sheared foam or emulsion from the energy dissipated inside the transient planar films, formed between neighboring bubbles or drops in the shear flow. The model predicts that the viscous stress in these systems should be proportional to Ca 1/2, where Ca is a capillary number and n=1/2 is the power-law index. In the current paper we explain our model in detail and develop it further in several aspects: First, we extend the model to account for the effects of viscous friction in the curved meniscus regions, surrounding the planar films, on the dynamics of film formation and on the total viscous stress. Second, we consider the effects of surface forces (electrostatic, van der Waals, etc.) acting between the surfaces of the neighboring bubbles or drops and show that these forces could be important in emulsions, due to the relatively small thickness of emulsion films (often comparable to the range of action of surface forces). In contrast, the surface forces are usually negligible in steadily sheared foams, because the dynamic foam films are thicker than the extent of surface forces, except for foams containing micrometer-sized bubbles and/or at very low shear rates. Third, additional consideration is made for bubbles or drops exhibiting high surface viscosity, for which we demonstrate an additional contribution to the macroscopic viscous stress, created by the surface dissipation of energy. The new upgraded model predicts that the energy dissipation at the bubble or drop surface leads to power-law index n<1/2 , whereas the contribution of the surface forces leads to n>1/2 , which explains the rich variety of foam or emulsion behaviors observed upon steady shear. Various comparisons are made between model predictions and experimental results for both foams and emulsions, and very good agreement is found.

6.
Phys Rev Lett ; 103(11): 118302, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19792405

RESUMO

Foam and emulsion jamming at low shear rates is explained by considering the thinning dynamics of the transient films, formed between neighboring bubbles and drops. After thinning gradually to a critical thickness, these films undergo an instability transition, which leads to the formation of very thin "black films" providing strong adhesion between the dispersed particles. Analysis shows that such film thickness instability occurs only if the contact time between particles is sufficiently long-an explicit expression for the respective critical shear rate is derived and compared to experimental data.

7.
Langmuir ; 24(18): 9956-61, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18698860

RESUMO

A new class of surfactant mixtures is described, which is particularly suitable for studies related to foam dynamics, such as studies of foam rheology, liquid drainage from foams and foam films, and bubble coarsening and rearrangement. These mixtures contain an anionic surfactant, a zwitterionic surfactant, and fatty acids (e.g., myristic or lauric) of low concentration. Solutions of these surfactant mixtures exhibit Newtonian behavior, and their viscosity could be varied by using glycerol. Most importantly, the dynamic surface properties of these solutions, such as their surface dilatational modulus, strongly depend on the presence and on the chain-length of fatty acid(s). Illustrative results are shown to demonstrate the dependence of solution properties on the composition of the surfactant mixture, and the resulting effects on foam rheological properties, foam film drainage, and bubble Ostwald ripening. The observed high surface modulus in the presence of fatty acids is explained with the formation of a surface condensed phase of fatty acid molecules in the surfactant adsorption layer.

8.
Phys Rev Lett ; 100(13): 138301, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18518002

RESUMO

We present a model for the viscous friction in foams and concentrated emulsions, subject to steady shear flow. First, we calculate the energy dissipated due to viscous friction inside the films between two neighboring bubbles or drops, which slide along each other in the flow. Next, from this energy we calculate the macroscopic viscous stress of the sheared foam or emulsion. The model predictions agree well with experimental results obtained with foams and emulsions.

9.
Langmuir ; 22(11): 4968-77, 2006 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-16700582

RESUMO

Here, we investigate water-in-oil (W/O) emulsions that are stabilized by polystyrene latex particles with sulfate surface groups. The particles, which play the role of emulsifier, are initially contained in the disperse (water) phase. The existence of such emulsions formally contradicts the empirical Bancroft rule. Theoretical considerations predict that the drop diameter has to be inversely proportional to the particle concentration, but should be independent of the volume fraction of water. In addition, there should be a second emulsification regime, in which the drop diameter is determined by the input mechanical energy during the homogenization. The existence of these two regimes has been experimentally confirmed, and the obtained data agree well with the theoretical model. Stable W/O emulsions have been produced with hexadecane and tetradecane, while, in the case of more viscous and polar oils (soybean and silicone oil), the particles enter into the oily phase, and Pickering emulsions cannot be obtained. The formation of stable emulsions demands the presence of a relatively high concentration of electrolyte that lowers the electrostatic barrier to particle adsorption at the oil-water interface. Because the attachment of particles at the drop surfaces represents a kind of coagulation, it turns out that the Schulze-Hardy rule for the critical concentration of coagulation is applicable also to emulsification, which has been confirmed with suspensions containing Na(+), Mg(2+), and Al(3+) counterions. The increase of the particle and electrolyte concentrations and the decrease of the volume fraction of water are other factors that facilitate emulsification in the investigated system. To quantify the combined action of these factors, an experimental stability-instability diagram has been obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA