Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Circulation ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804138

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a major complication linked to adverse outcomes in heart failure with preserved ejection fraction (HFpEF), yet no specific therapies exist for PH associated with HFpEF (PH-HFpEF). We have recently reported on the role of skeletal muscle SIRT3 (sirtuin-3) in modulation of PH-HFpEF, suggesting a novel endocrine signaling pathway for skeletal muscle modulation of pulmonary vascular remodeling. In this study, we attempted to define the processes by which skeletal muscle SIRT3 defects affect pulmonary vascular health in PH-HFpEF. METHODS AND RESULTS: Skeletal muscle-specific Sirt3 knockout mice (Sirt3skm-/-) exhibited reduced pulmonary vascular density accompanied by pulmonary vascular proliferative remodeling and elevated pulmonary pressures. Using mass spectrometry-based comparative secretome analysis, we demonstrated elevated secretion of LOXL2 (lysyl oxidase homolog 2) in SIRT3-deficient skeletal muscle cells. Elevated circulation and protein expression levels of LOXL2 were also observed in plasma and skeletal muscle of Sirt3skm-/- mice, a rat model of PH-HFpEF, and humans with PH-HFpEF. In addition, expression levels of CNPY2 (canopy fibroblast growth factor signaling regulator 2), a known proliferative and angiogenic factor, were increased in pulmonary artery endothelial cells and pulmonary artery smooth muscle cells of Sirt3skm-/- mice and animal models of PH-HFpEF. CNPY2 levels were also higher in pulmonary artery smooth muscle cells of subjects with obesity compared with nonobese subjects. Moreover, treatment with recombinant LOXL2 protein promoted pulmonary artery endothelial cell migration/proliferation and pulmonary artery smooth muscle cell proliferation through regulation of CNPY2-p53 signaling. Last, skeletal muscle-specific Loxl2 deletion decreased pulmonary artery endothelial cell and pulmonary artery smooth muscle cell expression of CNPY2 and improved pulmonary pressures in mice with high-fat diet-induced PH-HFpEF. CONCLUSIONS: This study demonstrates a systemic pathogenic impact of skeletal muscle SIRT3 deficiency in remote pulmonary vascular remodeling and PH-HFpEF. This study suggests a new endocrine signaling axis that links skeletal muscle health and SIRT3 deficiency to remote CNPY2 regulation in the pulmonary vasculature through myokine LOXL2. Our data also identify skeletal muscle SIRT3, myokine LOXL2, and CNPY2 as potential targets for the treatment of PH-HFpEF.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38860847

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vasoconstriction and remodeling of small pulmonary arteries (PAs). Central to the remodeling process is a switch of pulmonary vascular cells to a proliferative, apoptosis-resistant phenotype. Plasminogen activator inhibitor-1 (PAI-1) is the primary physiological inhibitor of urokinase-type and tissue-type plasminogen activators (uPA and tPA), but its role in PAH is unsettled. Here, we report that: (1) PAI-1 is deficient in remodeled small PAs and in early-passage PA smooth muscle and endothelial cells (PASMCs and PAECs) from subjects with PAH compared to controls; (2) PAI-1-/- mice spontaneously develop pulmonary vascular remodeling associated with up-regulation of mTORC1 signaling, pulmonary hypertension (PH), and right ventricle (RV) hypertrophy; and (3) pharmacological inhibition of uPA in human PAH PASMCs suppresses pro-proliferative mTORC1 and SMAD3 signaling, restores PAI-1 levels, reduces proliferation and induces apoptosis in vitro, and prevents the development of SU5416/hypoxia-induced PH and RV hypertrophy in vivo in mice. These data strongly suggest that down-regulation of PAI-1 in small PAs promotes vascular remodeling and PH due to unopposed activation of uPA and consequent up-regulation of mTOR and TGF-b signaling in PASMCs, and call for further studies to determine the potential benefits of targeting the PAI-1/uPA imbalance to attenuate and/or reverse pulmonary vascular remodeling and PH.

3.
Circ Res ; 130(5): 760-778, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35124974

RESUMO

RATIONALE: The MSTs (mammalian Ste20-like kinases) 1/2 are members of the HIPPO pathway that act as growth suppressors in adult proliferative diseases. Pulmonary arterial hypertension (PAH) manifests by increased proliferation and survival of pulmonary vascular cells in small PAs, pulmonary vascular remodeling, and the rise of pulmonary arterial pressure. The role of MST1/2 in PAH is currently unknown. OBJECTIVE: To investigate the roles and mechanisms of the action of MST1 and MST2 in PAH. METHODS AND RESULTS: Using early-passage pulmonary vascular cells from PAH and nondiseased lungs and mice with smooth muscle-specific tamoxifen-inducible Mst1/2 knockdown, we found that, in contrast to canonical antiproliferative/proapoptotic roles, MST1/2 act as proproliferative/prosurvival molecules in human PAH pulmonary arterial vascular smooth muscle cells and pulmonary arterial adventitial fibroblasts and support established pulmonary vascular remodeling and pulmonary hypertension in mice with SU5416/hypoxia-induced pulmonary hypertension. By using unbiased proteomic analysis, gain- and loss-of function approaches, and pharmacological inhibition of MST1/2 kinase activity by XMU-MP-1, we next evaluated mechanisms of regulation and function of MST1/2 in PAH pulmonary vascular cells. We found that, in PAH pulmonary arterial adventitial fibroblasts, the proproliferative function of MST1/2 is caused by IL-6-dependent MST1/2 overexpression, which induces PSMC6-dependent downregulation of forkhead homeobox type O 3 and hyperproliferation. In PAH pulmonary arterial vascular smooth muscle cells, MST1/2 acted via forming a disease-specific interaction with BUB3 and supported ECM (extracellular matrix)- and USP10-dependent BUB3 accumulation, upregulation of Akt-mTORC1, cell proliferation, and survival. Supporting our in vitro observations, smooth muscle-specific Mst1/2 knockdown halted upregulation of Akt-mTORC1 in small muscular PAs of mice with SU5416/hypoxia-induced pulmonary hypertension. CONCLUSIONS: Together, this study describes a novel proproliferative/prosurvival role of MST1/2 in PAH pulmonary vasculature, provides a novel mechanistic link from MST1/2 via BUB3 and forkhead homeobox type O to the abnormal proliferation and survival of pulmonary arterial vascular smooth muscle cells and pulmonary arterial adventitial fibroblasts, remodeling and pulmonary hypertension, and suggests new target pathways for therapeutic intervention.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Hipertensão Pulmonar , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Hipertensão Arterial Pulmonar , Animais , Proliferação de Células , Células Cultivadas , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Mamíferos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , Remodelação Vascular/fisiologia
4.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33879616

RESUMO

Recent studies have focused on the contribution of capillary endothelial TRPV4 channels to pulmonary pathologies, including lung edema and lung injury. However, in pulmonary hypertension (PH), small pulmonary arteries are the focus of the pathology, and endothelial TRPV4 channels in this crucial anatomy remain unexplored in PH. Here, we provide evidence that TRPV4 channels in endothelial cell caveolae maintain a low pulmonary arterial pressure under normal conditions. Moreover, the activity of caveolar TRPV4 channels is impaired in pulmonary arteries from mouse models of PH and PH patients. In PH, up-regulation of iNOS and NOX1 enzymes at endothelial cell caveolae results in the formation of the oxidant molecule peroxynitrite. Peroxynitrite, in turn, targets the structural protein caveolin-1 to reduce the activity of TRPV4 channels. These results suggest that endothelial caveolin-1-TRPV4 channel signaling lowers pulmonary arterial pressure, and impairment of endothelial caveolin-1-TRPV4 channel signaling contributes to elevated pulmonary arterial pressure in PH. Thus, inhibiting NOX1 or iNOS activity, or lowering endothelial peroxynitrite levels, may represent strategies for restoring vasodilation and pulmonary arterial pressure in PH.


Assuntos
Cavéolas/metabolismo , Endotélio Vascular/metabolismo , Ácido Peroxinitroso/metabolismo , Hipertensão Arterial Pulmonar/etiologia , Canais de Cátion TRPV/metabolismo , Animais , Pressão Arterial , Humanos , Camundongos Knockout , NADPH Oxidase 1/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína Quinase C/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Canais de Cátion TRPV/genética
5.
Circulation ; 144(8): 615-637, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34157861

RESUMO

BACKGROUND: Many patients with heart failure with preserved ejection fraction have metabolic syndrome and develop exercise-induced pulmonary hypertension (EIPH). Increases in pulmonary vascular resistance in patients with heart failure with preserved ejection fraction portend a poor prognosis; this phenotype is referred to as combined precapillary and postcapillary pulmonary hypertension (CpcPH). Therapeutic trials for EIPH and CpcPH have been disappointing, suggesting the need for strategies that target upstream mechanisms of disease. This work reports novel rat EIPH models and mechanisms of pulmonary vascular dysfunction centered around the transcriptional repression of the soluble guanylate cyclase (sGC) enzyme in pulmonary artery (PA) smooth muscle cells. METHODS: We used obese ZSF-1 leptin-receptor knockout rats (heart failure with preserved ejection fraction model), obese ZSF-1 rats treated with SU5416 to stimulate resting pulmonary hypertension (obese+sugen, CpcPH model), and lean ZSF-1 rats (controls). Right and left ventricular hemodynamics were evaluated using implanted catheters during treadmill exercise. PA function was evaluated with magnetic resonance imaging and myography. Overexpression of nuclear factor Y α subunit (NFYA), a transcriptional enhancer of sGC ß1 subunit (sGCß1), was performed by PA delivery of adeno-associated virus 6. Treatment groups received the SGLT2 inhibitor empagliflozin in drinking water. PA smooth muscle cells from rats and humans were cultured with palmitic acid, glucose, and insulin to induce metabolic stress. RESULTS: Obese rats showed normal resting right ventricular systolic pressures, which significantly increased during exercise, modeling EIPH. Obese+sugen rats showed anatomic PA remodeling and developed elevated right ventricular systolic pressure at rest, which was exacerbated with exercise, modeling CpcPH. Myography and magnetic resonance imaging during dobutamine challenge revealed PA functional impairment of both obese groups. PAs of obese rats produced reactive oxygen species and decreased sGCß1 expression. Mechanistically, cultured PA smooth muscle cells from obese rats and humans with diabetes or treated with palmitic acid, glucose, and insulin showed increased mitochondrial reactive oxygen species, which enhanced miR-193b-dependent RNA degradation of nuclear factor Y α subunit (NFYA), resulting in decreased sGCß1-cGMP signaling. Forced NYFA expression by adeno-associated virus 6 delivery increased sGCß1 levels and improved exercise pulmonary hypertension in obese+sugen rats. Treatment of obese+sugen rats with empagliflozin improved metabolic syndrome, reduced mitochondrial reactive oxygen species and miR-193b levels, restored NFYA/sGC activity, and prevented EIPH. CONCLUSIONS: In heart failure with preserved ejection fraction and CpcPH models, metabolic syndrome contributes to pulmonary vascular dysfunction and EIPH through enhanced reactive oxygen species and miR-193b expression, which downregulates NFYA-dependent sGCß1 expression. Adeno-associated virus-mediated NFYA overexpression and SGLT2 inhibition restore NFYA-sGCß1-cGMP signaling and ameliorate EIPH.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Insuficiência Cardíaca/etiologia , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/etiologia , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , MicroRNAs/genética , Espécies Reativas de Oxigênio/metabolismo , Guanilil Ciclase Solúvel/genética , Animais , Animais Geneticamente Modificados , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Exercício Físico , Regulação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico , Humanos , Síndrome Metabólica/complicações , Mitocôndrias Cardíacas , Miócitos de Músculo Liso/metabolismo , Fenótipo , Ratos , Transdução de Sinais , Estresse Fisiológico , Volume Sistólico , Disfunção Ventricular Direita
6.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555783

RESUMO

The mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that regulates multiple processes, including gene transcription, protein synthesis, ribosome biogenesis, autophagy, cell metabolism, and cell growth [...].


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/genética , Biossíntese de Proteínas , Autofagia
8.
Arterioscler Thromb Vasc Biol ; 40(6): 1543-1558, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268788

RESUMO

OBJECTIVE: Pulmonary hypertension (PH) due to left heart disease (group 2), especially in the setting of heart failure with preserved ejection fraction (HFpEF), is the most common cause of PH worldwide; however, at present, there is no proven effective therapy available for its treatment. PH-HFpEF is associated with insulin resistance and features of metabolic syndrome. The stable prostacyclin analog, treprostinil, is an effective and widely used Food and Drug Administration-approved drug for the treatment of pulmonary arterial hypertension. While the effect of treprostinil on metabolic syndrome is unknown, a recent study suggests that the prostacyclin analog beraprost can improve glucose intolerance and insulin sensitivity. We sought to evaluate the effectiveness of treprostinil in the treatment of metabolic syndrome-associated PH-HFpEF. Approach and Results: Treprostinil treatment was given to mice with mild metabolic syndrome-associated PH-HFpEF induced by high-fat diet and to SU5416/obese ZSF1 rats, a model created by the treatment of rats with a more profound metabolic syndrome due to double leptin receptor defect (obese ZSF1) with a vascular endothelial growth factor receptor blocker SU5416. In high-fat diet-exposed mice, chronic treatment with treprostinil reduced hyperglycemia and pulmonary hypertension. In SU5416/Obese ZSF1 rats, treprostinil improved hyperglycemia with similar efficacy to that of metformin (a first-line drug for type 2 diabetes mellitus); the glucose-lowering effect of treprostinil was further potentiated by the combined treatment with metformin. Early treatment with treprostinil in SU5416/Obese ZSF1 rats lowered pulmonary pressures, and a late treatment with treprostinil together with metformin improved pulmonary artery acceleration time to ejection time ratio and tricuspid annular plane systolic excursion with AMPK (AMP-activated protein kinase) activation in skeletal muscle and the right ventricle. CONCLUSIONS: Our data suggest a potential use of treprostinil as an early treatment for mild metabolic syndrome-associated PH-HFpEF and that combined treatment with treprostinil and metformin may improve hyperglycemia and cardiac function in a more severe disease.


Assuntos
Epoprostenol/análogos & derivados , Insuficiência Cardíaca/complicações , Hiperglicemia/tratamento farmacológico , Hipertensão Pulmonar/tratamento farmacológico , Metformina/uso terapêutico , Volume Sistólico/fisiologia , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Anti-Hipertensivos , Dieta Hiperlipídica , Epoprostenol/uso terapêutico , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Hipoglicemiantes , Resistência à Insulina , Masculino , Síndrome Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/fisiopatologia , Ratos , Receptores para Leptina/genética
11.
Am J Respir Crit Care Med ; 199(2): 199-210, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30211629

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by vascular cell proliferation and endothelial cell apoptosis. TLR3 (Toll-like receptor 3) is a receptor for double-stranded RNA and has been recently implicated in vascular protection. OBJECTIVES: To study the expression and role of TLR3 in PAH and to determine whether a TLR3 agonist reduces pulmonary hypertension in preclinical models. METHODS: Lung tissue and endothelial cells from patients with PAH were investigated by polymerase chain reaction, immunofluorescence, and apoptosis assays. TLR3-/- and TLR3+/+ mice were exposed to chronic hypoxia and SU5416. Chronic hypoxia or chronic hypoxia/SU5416 rats were treated with the TLR3 agonist polyinosinic/polycytidylic acid (Poly[I:C]). MEASUREMENTS AND MAIN RESULTS: TLR3 expression was reduced in PAH patient lung tissue and endothelial cells, and TLR3-/- mice exhibited more severe pulmonary hypertension following exposure to chronic hypoxia/SU5416. TLR3 knockdown promoted double-stranded RNA signaling via other intracellular RNA receptors in endothelial cells. This was associated with greater susceptibility to apoptosis, a known driver of pulmonary vascular remodeling. Poly(I:C) increased TLR3 expression via IL-10 in rat endothelial cells. In vivo, high-dose Poly(I:C) reduced pulmonary hypertension in both rat models in proof-of-principle experiments. In addition, Poly(I:C) also reduced right ventricular failure in established pulmonary hypertension. CONCLUSIONS: Our work identifies a novel role for TLR3 in PAH based on the findings that reduced expression of TLR3 contributes to endothelial apoptosis and pulmonary vascular remodeling.


Assuntos
Hipertensão Pulmonar/genética , Receptor 3 Toll-Like/genética , Animais , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Camundongos , Ratos , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo
14.
Int J Mol Sci ; 19(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274147

RESUMO

Increased growth and proliferation of distal pulmonary artery vascular smooth muscle cells (PAVSMC) is an important pathological component of pulmonary arterial hypertension (PAH). Transforming Growth Factor-ß (TGF-ß) superfamily plays a critical role in PAH, but relative impacts of self-secreted Activin A, Gremlin1, and TGF-ß on PAH PAVSMC growth and proliferation are not studied. Here we report that hyper-proliferative human PAH PAVSMC have elevated secretion of TGF-ß1 and, to a lesser extent, Activin A, but not Gremlin 1, and significantly reduced Ser465/467-Smad2 and Ser423/425-Smad3 phosphorylation compared to controls. Media, conditioned by PAH PAVSMC, markedly increased Ser465/467-Smad2, Ser423/425-Smad3, and Ser463/465-Smad1/5 phosphorylation, up-regulated Akt, ERK1/2, and p38 MAPK, and induced significant proliferation of non-diseased PAVSMC. Inhibitory anti-Activin A antibody reduced PAH PAVSMC growth without affecting canonical (Smads) or non-canonical (Akt, ERK1/2, p38 MAPK) effectors. Inhibitory anti-TGF-ß antibody significantly reduced P-Smad3, P-ERK1/2 and proliferation of PAH PAVSMC, while anti-Gremlin 1 had no anti-proliferative effect. PDGF-BB diminished inhibitory effects of anti-Activin A and anti-TGF-ß antibodies. None of the antibodies affected growth and proliferation of non-diseased PAVSMC induced by PAH PAVSMC-secreted factors. Together, these data demonstrate that human PAH PAVSMC have secretory, proliferative phenotype that could be targeted by anti-Activin A and anti-TGF-ß antibodies; potential cross-talk with PDGF-BB should be considered while developing therapeutic interventions.


Assuntos
Ativinas/imunologia , Anticorpos/farmacologia , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/patologia , Fator de Crescimento Transformador beta/imunologia , Adulto , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2 , Proteína Smad3 , Solubilidade , Regulação para Cima/efeitos dos fármacos , Adulto Jovem
16.
Am J Respir Cell Mol Biol ; 57(5): 615-625, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28679058

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling, increased pulmonary artery (PA) pressure, right-heart afterload and death. Mechanistic target of rapamycin (mTOR) promotes smooth muscle cell proliferation, survival, and pulmonary vascular remodeling via two functionally distinct mTOR complexes (mTORCs)-1 (supports cell growth) and -2 (promotes cell survival), and dual mTORC1/mTORC2 inhibition selectively induces pulmonary arterial hypertension PA vascular smooth muscle cell apoptosis and reverses pulmonary vascular remodeling. The consequences of mTOR inhibition on right ventricle (RV) morphology and function are not known. Using SU5416/hypoxia rat model of pulmonary hypertension (PH), we report that, in contrast to activation of both mTORC1 and mTORC2 pathways in small remodeled PAs, RV tissues had predominant up-regulation of mTORC1 signaling accompanied by cardiomyocyte and RV hypertrophy, increased RV wall thickness, RV/left ventricle end-diastolic area ratio, RV contractility and afterload (arterial elastance), and shorter RV acceleration time compared with controls. Treatment with mTOR kinase inhibitor, PP242, at Weeks 6-8 after PH induction suppressed both mTORC1 and mTORC2 in small PAs, but only mTORC1 signaling in RV, preserving basal mTORC2-Akt levels. Vehicle-treated rats showed further PH and RV worsening and profound RV fibrosis. PP242 reversed pulmonary vascular remodeling and prevented neointimal occlusion of small PAs, significantly reduced PA pressure and pulmonary vascular resistance, reversed cardiomyocyte hypertrophy and RV remodeling, improved max RV contractility, arterial elastance, and RV acceleration time, and prevented development of RV fibrosis. Collectively, these data show a predominant role of mTORC1 versus mTORC2 in RV pathology, and suggest potential attractiveness of mTOR inhibition to simultaneously target pulmonary vascular remodeling and RV dysfunction in established PH.


Assuntos
Hipertrofia Ventricular Direita/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Indóis/farmacologia , Masculino , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Pirróis/farmacologia , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/antagonistas & inibidores
17.
Circulation ; 133(8): 717-31, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26813102

RESUMO

BACKGROUND: Pulmonary hypertension associated with heart failure with preserved ejection fraction (PH-HFpEF) is an increasingly recognized clinical complication of metabolic syndrome. No adequate animal model of PH-HFpEF is available, and no effective therapies have been identified to date. A recent study suggested that dietary nitrate improves insulin resistance in endothelial nitric oxide synthase null mice, and multiple studies have reported that both nitrate and its active metabolite, nitrite, have therapeutic activity in preclinical models of pulmonary hypertension. METHODS AND RESULTS: To evaluate the efficacy and mechanism of nitrite in metabolic syndrome associated with PH-HFpEF, we developed a 2-hit PH-HFpEF model in rats with multiple features of metabolic syndrome attributable to double-leptin receptor defect (obese ZSF1) with the combined treatment of vascular endothelial growth factor receptor blocker SU5416. Chronic oral nitrite treatment improved hyperglycemia in obese ZSF1 rats by a process that requires skeletal muscle SIRT3-AMPK-GLUT4 signaling. The glucose-lowering effect of nitrite was abolished in SIRT3-deficient human skeletal muscle cells, and in SIRT3 knockout mice fed a high-fat diet, as well. Skeletal muscle biopsies from humans with metabolic syndrome after 12 weeks of oral sodium nitrite and nitrate treatment (IND#115926) displayed increased activation of SIRT3 and AMP-activated protein kinase. Finally, early treatments with nitrite and metformin at the time of SU5416 injection reduced pulmonary pressures and vascular remodeling in the PH-HFpEF model with robust activation of skeletal muscle SIRT3 and AMP-activated protein kinase. CONCLUSIONS: These studies validate a rodent model of metabolic syndrome and PH-HFpEF, suggesting a potential role of nitrite and metformin as a preventative treatment for this disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Insuficiência Cardíaca/metabolismo , Hiperglicemia/metabolismo , Hipertensão Pulmonar/metabolismo , Sirtuína 3/metabolismo , Volume Sistólico/fisiologia , Animais , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Hiperglicemia/tratamento farmacológico , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ratos , Ratos Zucker , Nitrito de Sódio/farmacologia , Nitrito de Sódio/uso terapêutico , Volume Sistólico/efeitos dos fármacos
18.
Clin Sci (Lond) ; 131(15): 2019-2035, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28522681

RESUMO

Pulmonary arterial hypertension (PAH) is a rapidly degenerating and devastating disease of increased pulmonary vessel resistance leading to right heart failure. Palliative modalities remain limited despite recent endeavors to investigate the mechanisms underlying increased pulmonary vascular resistance (PVR), i.e. aberrant vascular remodeling and occlusion. However, little is known of the molecular mechanisms responsible for endothelial proliferation, a root cause of PAH-associated vascular remodeling. Lung tissue specimens from PAH and non-PAH patients and hypoxia-exposed human pulmonary artery endothelial cells (ECs) (HPAEC) were assessed for mRNA and protein expression. Reactive oxygen species (ROS) were measured using cytochrome c and Amplex Red assays. Findings demonstrate for the first time an up-regulation of NADPH oxidase 1 (Nox1) at the transcript and protein level in resistance vessels from PAH compared with non-PAH patients. This coincided with an increase in ROS production and expression of bone morphogenetic protein (BMP) antagonist Gremlin1 (Grem1). In HPAEC, hypoxia induced Nox1 subunit expression, assembly, and oxidase activity leading to elevation in sonic hedgehog (SHH) and Grem1 expression. Nox1 gene silencing abrogated this cascade. Moreover, loss of either Nox1, SHH or Grem1 attenuated hypoxia-induced EC proliferation. Together, these data support a Nox1-SHH-Grem1 signaling axis in pulmonary vascular endothelium that is likely to contribute to pathophysiological endothelial proliferation and the progression of PAH. These findings also support targeting of Nox1 as a viable therapeutic option to combat PAH.


Assuntos
Proliferação de Células , Hipertensão Pulmonar/enzimologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , NADPH Oxidases/metabolismo , Adulto , Idoso , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Pessoa de Meia-Idade , NADPH Oxidase 1 , NADPH Oxidases/genética , Artéria Pulmonar/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
20.
Am J Respir Crit Care Med ; 194(7): 866-877, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27119551

RESUMO

RATIONALE: Enhanced proliferation and impaired apoptosis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key pathophysiologic components of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). OBJECTIVES: To determine the role and therapeutic relevance of HIPPO signaling in PAVSMC proliferation/apoptosis imbalance in PAH. METHODS: Primary distal PAVSMCs, lung tissue sections from unused donor (control) and idiopathic PAH lungs, and rat and mouse models of SU5416/hypoxia-induced pulmonary hypertension (PH) were used. Immunohistochemical, immunocytochemical, and immunoblot analyses and transfection, infection, DNA synthesis, apoptosis, migration, cell count, and protein activity assays were performed in this study. MEASUREMENTS AND MAIN RESULTS: Immunohistochemical and immunoblot analyses demonstrated that the HIPPO central component large tumor suppressor 1 (LATS1) is inactivated in small remodeled pulmonary arteries (PAs) and distal PAVSMCs in idiopathic PAH. Molecular- and pharmacology-based analyses revealed that LATS1 inactivation and consequent up-regulation of its reciprocal effector Yes-associated protein (Yap) were required for activation of mammalian target of rapamycin (mTOR)-Akt, accumulation of HIF1α, Notch3 intracellular domain and ß-catenin, deficiency of proapoptotic Bim, increased proliferation, and survival of human PAH PAVSMCs. LATS1 inactivation and up-regulation of Yap increased production and secretion of fibronectin that up-regulated integrin-linked kinase 1 (ILK1). ILK1 supported LATS1 inactivation, and its inhibition reactivated LATS1, down-regulated Yap, suppressed proliferation, and promoted apoptosis in PAH, but not control PAVSMCs. PAVSM in small remodeled PAs from rats and mice with SU5416/hypoxia-induced PH showed down-regulation of LATS1 and overexpression of ILK1. Treatment of mice with selective ILK inhibitor Cpd22 at Days 22-35 of SU5416/hypoxia exposure restored LATS1 signaling and reduced established pulmonary vascular remodeling and PH. CONCLUSIONS: These data report inactivation of HIPPO/LATS1, self-supported via Yap-fibronectin-ILK1 signaling loop, as a novel mechanism of self-sustaining proliferation and apoptosis resistance of PAVSMCs in PAH and suggest a new potential target for therapeutic intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA