Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D1010-D1017, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37791879

RESUMO

Genome-wide association studies (GWAS) have identified numerous genetic variants associated with diseases and traits. However, the functional interpretation of these variants remains challenging. Expression quantitative trait loci (eQTLs) have been widely used to identify mutations linked to disease, yet they explain only 20-50% of disease-related variants. Single-cell eQTLs (sc-eQTLs) studies provide an immense opportunity to identify new disease risk genes with expanded eQTL scales and transcriptional regulation at a much finer resolution. However, there is no comprehensive database dedicated to single-cell eQTLs that users can use to search, analyse and visualize them. Therefore, we developed the scQTLbase (http://bioinfo.szbl.ac.cn/scQTLbase), the first integrated human sc-eQTLs portal, featuring 304 datasets spanning 57 cell types and 95 cell states. It contains ∼16 million SNPs significantly associated with cell-type/state gene expression and ∼0.69 million disease-associated sc-eQTLs from 3 333 traits/diseases. In addition, scQTLbase offers sc-eQTL search, gene expression visualization in UMAP plots, a genome browser, and colocalization visualization based on the GWAS dataset of interest. scQTLbase provides a one-stop portal for sc-eQTLs that will significantly advance the discovery of disease susceptibility genes.


Assuntos
Bases de Dados Genéticas , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
2.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38058186

RESUMO

Genome-wide association studies (GWAS) have identified thousands of disease-associated non-coding variants, posing urgent needs for functional interpretation. Molecular Quantitative Trait Loci (xQTLs) such as eQTLs serve as an essential intermediate link between these non-coding variants and disease phenotypes and have been widely used to discover disease-risk genes from many population-scale studies. However, mining and analyzing the xQTLs data presents several significant bioinformatics challenges, particularly when it comes to integration with GWAS data. Here, we developed xQTLbiolinks as the first comprehensive and scalable tool for bulk and single-cell xQTLs data retrieval, quality control and pre-processing from public repositories and our integrated resource. In addition, xQTLbiolinks provided a robust colocalization module through integration with GWAS summary statistics. The result generated by xQTLbiolinks can be flexibly visualized or stored in standard R objects that can easily be integrated with other R packages and custom pipelines. We applied xQTLbiolinks to cancer GWAS summary statistics as case studies and demonstrated its robust utility and reproducibility. xQTLbiolinks will profoundly accelerate the interpretation of disease-associated variants, thus promoting a better understanding of disease etiologies. xQTLbiolinks is available at https://github.com/lilab-bioinfo/xQTLbiolinks.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Fenótipo , Biologia Computacional , Polimorfismo de Nucleotídeo Único
3.
Artigo em Inglês | MEDLINE | ID: mdl-39178387

RESUMO

Growing evidence supports the transcription of enhancer RNAs (eRNAs) and their important roles in gene regulation. However, their interactions with other biomolecules and their corresponding functionality remain poorly understood. In an attempt to facilitate mechanistic research, this study presents eRNA-IDO, the first integrative computational platform for the identification, interactome discovery, and functional annotation of human eRNAs. eRNA-IDO comprises two modules: eRNA-ID and eRNA-Anno. Functionally, eRNA-ID can identify eRNAs from de novo assembled transcriptomes. eRNA-ID includes 8 kinds of enhancer makers, enabling users to customize enhancer regions flexibly and conveniently. In addition, eRNA-Anno provides cell-specific/tissue-specific functional annotation for both new and known eRNAs by analyzing the eRNA interactome from prebuilt or user-defined networks between eRNA and coding gene. The prebuilt networks include the Genotype-Tissue Expression (GTEx)-based co-expression networks in normal tissues, The Cancer Genome Atlas (TCGA)-based co-expression networks in cancer tissues, and omics-based eRNA-centric regulatory networks. eRNA-IDO can facilitate research on the biogenesis and functions of eRNAs. The eRNA-IDO server is freely available at http://bioinfo.szbl.ac.cn/eRNA_IDO/.

4.
Sci Adv ; 10(28): eadl5606, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985880

RESUMO

Abnormal transcription initiation from alternative first exon has been reported to promote tumorigenesis. However, the prevalence and impact of gene expression regulation mediated by alternative tandem transcription initiation were mostly unknown in cancer. Here, we developed a robust computational method to analyze alternative tandem transcription start site (TSS) usage from standard RNA sequencing data. Applying this method to pan-cancer RNA sequencing datasets, we observed widespread dysregulation of tandem TSS usage in tumors, many of which were independent of changes in overall expression level or alternative first exon usage. We showed that the dynamics of tandem TSS usage was associated with epigenomic modulation. We found that significant 5' untranslated region shortening of gene TIMM13 contributed to increased protein production, and up-regulation of TIMM13 by CRISPR-mediated transcriptional activation promoted proliferation and migration of lung cancer cells. Our findings suggest that dysregulated tandem TSS usage represents an addtional layer of cancer-associated transcriptome alterations.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias , Sítio de Iniciação de Transcrição , Transcriptoma , Humanos , Perfilação da Expressão Gênica/métodos , Neoplasias/genética , Linhagem Celular Tumoral , Proliferação de Células/genética
5.
Nat Commun ; 15(1): 1729, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409266

RESUMO

Alternative polyadenylation plays an important role in cancer initiation and progression; however, current transcriptome-wide association studies mostly ignore alternative polyadenylation when identifying putative cancer susceptibility genes. Here, we perform a pan-cancer 3' untranslated region alternative polyadenylation transcriptome-wide association analysis by integrating 55 well-powered (n > 50,000) genome-wide association studies datasets across 22 major cancer types with alternative polyadenylation quantification from 23,955 RNA sequencing samples across 7,574 individuals. We find that genetic variants associated with alternative polyadenylation are co-localized with 28.57% of cancer loci and contribute a significant portion of cancer heritability. We further identify 642 significant cancer susceptibility genes predicted to modulate cancer risk via alternative polyadenylation, 62.46% of which have been overlooked by traditional expression- and splicing- studies. As proof of principle validation, we show that alternative alleles facilitate 3' untranslated region lengthening of CRLS1 gene leading to increased protein abundance and promoted proliferation of breast cancer cells. Together, our study highlights the significant role of alternative polyadenylation in discovering new cancer susceptibility genes and provides a strong foundational framework for enhancing our understanding of the etiology underlying human cancers.


Assuntos
Neoplasias , Transcriptoma , Humanos , Poliadenilação/genética , Estudo de Associação Genômica Ampla , Regiões 3' não Traduzidas/genética , Perfilação da Expressão Gênica , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA