Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
Plant Cell ; 34(11): 4409-4427, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36000899

RESUMO

Ascorbic acid (AsA) is a multifunctional phytonutrient that is essential for the human diet as well as plant development. While much is known about AsA biosynthesis in plants, how this process is regulated in tomato (Solanum lycopersicum) fruits remains unclear. Here, we found that auxin treatment inhibited AsA accumulation in the leaves and pericarps of tomato. The auxin response factor gene SlARF4 is induced by auxin to mediate auxin-induced inhibition of AsA accumulation. Specifically, SlARF4 transcriptionally inhibits the transcription factor gene SlMYB11, thereby modulating AsA accumulation by regulating the transcription of the AsA biosynthesis genes l-galactose-1-phosphate phosphatase, l-galactono-1,4-lactone dehydrogenase, and dehydroascorbate. By contrast, abscisic acid (ABA) treatment increased AsA accumulation in tomato under drought stress. ABA induced the expression of the mitogen-activated protein kinase gene SlMAPK8. We demonstrate that SlMAPK8 phosphorylates SlARF4 and inhibits its transcriptional activity, whereas SlMAPK8 phosphorylates SlMYB11 and activates its transcriptional activity. SlMAPK8 functions in ABA-induced AsA accumulation and drought stress tolerance. Moreover, ABA antagonizes the effects of auxin on AsA biosynthesis. Therefore, auxin- and ABA-induced regulation of AsA accumulation is mediated by the SlMAPK8-SlARF4-SlMYB11 module in tomato during fruit development and drought stress responses, shedding light on the roles of phytohormones in regulating AsA accumulation to mediate stress tolerance.


Assuntos
Ácido Abscísico , Ácido Ascórbico , Secas , Ácidos Indolacéticos , Proteínas de Plantas , Solanum lycopersicum , Estresse Fisiológico , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Ácido Ascórbico/biossíntese , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Hum Mol Genet ; 31(18): 3051-3067, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35445712

RESUMO

Asians are underrepresented across many omics databases, thereby limiting the potential of precision medicine in nearly 60% of the global population. As such, there is a pressing need for multi-omics derived quantitative trait loci (QTLs) to fill the knowledge gap of complex traits in populations of Asian ancestry. Here, we provide the first blood-based multi-omics analysis of Asian pregnant women, constituting high-resolution genotyping (N = 1079), DNA methylation (N = 915) and transcriptome profiling (N = 238). Integrative omics analysis identified 219 154 CpGs associated with cis-DNA methylation QTLs (meQTLs) and 3703 RNAs associated with cis-RNA expression QTLs (eQTLs). Ethnicity was the largest contributor of inter-individual variation across all omics datasets, with 2561 genes identified as hotspots of this variation; 395 of these hotspot genes also contained both ethnicity-specific eQTLs and meQTLs. Gene set enrichment analysis of these ethnicity QTL hotspots showed pathways involved in lipid metabolism, adaptive immune system and carbohydrate metabolism. Pathway validation by profiling the lipidome (~480 lipids) of antenatal plasma (N = 752) and placenta (N = 1042) in the same cohort showed significant lipid differences among Chinese, Malay and Indian women, validating ethnicity-QTL gene effects across different tissue types. To develop deeper insights into the complex traits and benefit future precision medicine research in Asian pregnant women, we developed iMOMdb, an open-access database.


Assuntos
Gestantes , Locos de Características Quantitativas , Povo Asiático/genética , Feminino , Humanos , Lipídeos , Gravidez , Locos de Características Quantitativas/genética , RNA
3.
BMC Plant Biol ; 24(1): 758, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112960

RESUMO

Constant-frequency ultrasonic treatment helped to improve seed germination. However, variable-frequency ultrasonic treatment on maize seed germination were rarely reported. In this study, maize seeds were exposed to 20-40 kHz ultrasonic for 40 s. The germination percentage and radicle length of maize seeds increased by 10.4% and 230.5%. Ultrasonic treatment also significantly increased the acid protease, α-amylase, and ß-amylase contents by 96.4%, 73.8%, and 49.1%, respectively. Transcriptome analysis showed that 11,475 differentially expressed genes (DEGs) were found in the ultrasonic treatment and control groups, including 5,695 upregulated and 5,780 downregulated. Metabolic pathways and transcription factors (TFs) were significantly enriched among DEGs after ultrasonic treatment. This included metabolism and genetic information processing, that is, ribosome, proteasome, and pyruvate metabolism, sesquiterpenoid, triterpenoid, and phenylpropanoid biosynthesis, and oxidative phosphorylation, as well as transcription factors in the NAC, MYB, bHLH, WRKY, AP2, bZIP, and ARF families. Variable-frequency ultrasonic treatment increased auxin, gibberellin, and salicylic acid by 5.5%, 37.3%, and 28.9%, respectively. Abscisic acid significantly decreased by 33.2%. The related DEGs were upregulated and downregulated to varying degrees. Seed germination under the abiotic stress conditions of salt stress (NaCl solution), drought (PEG solution), and waterlogging (water-saturated sand bed) under ultrasonic treatment were promoted, radicle length was significantly increased by 30.2%, 30.5%, and 27.3%, respectively; and germination percentage by 14.8%, 20.1%, and 21.6%, respectively. These findings provide new insight into the mechanisms through ultrasonic to promote maize seed germination.


Assuntos
Germinação , Sementes , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Germinação/efeitos da radiação , Sementes/efeitos da radiação , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/fisiologia , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Ondas Ultrassônicas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Small ; 20(30): e2400161, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431936

RESUMO

Hydrogels are currently in the limelight for applications in soft electronics but they suffer from the tendency to lose water or freeze when exposed to dry environments or low temperatures. Molecular crowding is a prevalent occurrence in living cells, in which molecular crowding agents modify the hydrogen bonding structure, causing a significant reduction in water activity. Here, a wide-humidity range applicable, anti-freezing, and robust hydrogel is developed through the incorporation of natural amino acid proline (Pro) and conductive MXene into polyvinyl alcohol (PVA) hydrogel networks. Theoretical calculations reveal that Pro can transform "free water" into "locked water" via the molecular-crowding effect, thereby suppressing water evaporation and ice forming. Accordingly, the prepared hydrogel exhibits high water retention capability, with 77% and 55% being preserved after exposure to 20 °C, 28% relative humidity (RH) and 35 °C, 90% RH for 12 h. Meanwhile, Pro lowers the freezing temperature of the hydrogel to 34 °C and enhances its stretchability and strength. Finally, the PVA/Pro/MXene hydrogels are assembled as multifunctional on-skin strain sensors and conductive electrodes to monitor human motions and detect tiny electrophysiological signals. Collectively, this work provides a molecular crowding strategy that will motivate researchers to develop more advanced hydrogels for versatile applications.


Assuntos
Eletrônica , Congelamento , Umidade , Hidrogéis , Álcool de Polivinil , Hidrogéis/química , Álcool de Polivinil/química , Humanos , Pele , Prolina/química
5.
Small ; : e2403275, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934359

RESUMO

Due to the intrinsic flame-retardant, eutectic electrolytes are considered a promising candidate for sodium-metal batteries (SMBs). However, the high viscosity and ruinous side reaction with Na metal anode greatly hinder their further development. Herein, based on the Lewis acid-base theory, a new eutectic electrolyte (EE) composed of sodium bis(trifluoromethanesulfonyl)imide (NaTFSI), succinonitrile (SN), and fluoroethylene carbonate (FEC) is reported. As a strong Lewis base, the ─C≡N group of SN can effectively weaken the interaction between Na+ and TFSI-, achieving the dynamic equilibrium and reducing the viscosity of EE. Moreover, the FEC additive shows a low energy level to construct thicker and denser solid electrolyte interphase (SEI) on the Na metal surface, which can effectively eliminate the side reaction between EE and Na metal anode. Therefore, EE-1:6 + 5% FEC shows high ionic conductivity (2.62 mS cm-1) and ultra-high transference number of Na+ (0.96). The Na||Na symmetric cell achieves stable Na plating/stripping for 1100 h and Na||Na3V2(PO4)3/C cell shows superior long-term cycling stability over 2000 cycles (99.1% retention) at 5 C. More importantly, the Na||NVP/C pouch cell demonstrates good cycling performance of 102.1 mAh g-1 after 135 cycles at 0.5 C with an average coulombic efficiency of 99.63%.

6.
Horm Metab Res ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346689

RESUMO

The aim of the study was to investigate whether the biomarkers for bone turnover could rapidly recover during the period of diabetic ketoacidosis (DKA). Bone turnover biomarkers, including 25-hydroxyvitamin D3, N-terminal middle molecular fragment of osteocalcin (NMID), and ß-C terminal cross-linking telopeptide of type 1 collagen were evaluated using in-patient data (n=627) from Shanghai Pudong Hospital from 2018-2022. The comparison was performed between type 2 diabetes (T2D only) (n=602) and DKA (n=25), in which we checked the bone turnover markers at pre-treatment and recovery. After matching by body mass index (BMI), we found that except for 25-OH-VitD3, the age difference, indices of glucose metabolism, and bone turnover were significant between the 2 groups (p<0.05). We found only a significant restoration of NMID (p<0.001). NMID and ß-CTX, when compared with T2D, showed overt distinction between recovery and T2D (p<0.05). In addition, the investigations demonstrated a substantial difference between 25-OH-VitD3 in males and NMID in females, regardless of age (p<0.05). Multilinear regression analysis revealed that 2 hours postprandial plasma C-peptide was an independent predictor of the NMID in both pre-treatment (ß=0.58, p=0.003) and recovery (ß=0.447, p=0.025), although sex was significant in pre-treatment (ß=-0.444, p=0.020). Finally, we found that only age variation affected DKA's fasting plasma glucose level (p<0.05). The study revealed that the bone turnover of DKA is significantly different in pre-treatment and recovery; however, NMID might recover quickly if the patients received appropriate treatment. Importantly, pancreatic function plays a critical role in changing bone turnover biomarkers.

7.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 168-173, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650138

RESUMO

Genetic predisposition to oxidative stress (OS) may influence the risk of Painful Diabetic Peripheral Neuropathy (PDPN). This study employed a Mendelian Randomization (MR) approach to investigate the causal relationship between genetic predisposition to OS and PDPN. Genetic instruments associated with OS biomarkers were selected as exposures. Summary-level data on PDPN was obtained from the largest available genome-wide association study (GWAS). MR analyses were conducted using the inverse-variance weighted (IVW) method, with sensitivity analyses employing the MR-Egger, weighted median, and MR-PRESSO approaches. Genetic predisposition to increased glutathione S-transferase (GST) activity was associated with a reduced risk of PDPN (OR=0.66, 95%CI: 0.49-0.89, P=0.006). Higher ascorbate levels conferred a protective effect against PDPN (OR=0.83, 95%CI: 0.71-0.97, P=0.018). No significant association was observed between genetic predisposition to OS biomarkers and PDPN severity. Genetic predisposition to increased GST activity and higher ascorbate levels protect against the development of PDPN, suggesting a causal relationship.


Assuntos
Ácido Ascórbico , Neuropatias Diabéticas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glutationa Transferase , Análise da Randomização Mendeliana , Estresse Oxidativo , Humanos , Estresse Oxidativo/genética , Neuropatias Diabéticas/genética , Glutationa Transferase/genética , Ácido Ascórbico/metabolismo , Polimorfismo de Nucleotídeo Único , Biomarcadores/metabolismo
8.
Kidney Blood Press Res ; 49(1): 310-325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38648755

RESUMO

INTRODUCTION: Focal segmental glomerulosclerosis (FSGS) is a common glomerulopathy with an unclear mechanism. The demand for FSGS clinical diagnostic biomarkers has not yet been met. Circular RNA (circRNA) is a novel non-coding RNA with multiple functions, but its diagnostic value for FSGS remains unexplored. This study aimed to identify circRNAs that could aid in early clinical diagnosis and to investigate their mechanisms in podocyte injury. METHODS: The signature of plasma circRNAs for FSGS was identified by circRNA microarray. The existence of circRNAs was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR), RNase R assay, and DNA sequencing. Plasma levels of circRNAs were evaluated by qRT-PCR. The diagnostic value was appraised by the receiver operating characteristic curve. The circRNA-miRNA-mRNA network was built with Cytoscape 7.3.2. Statistically significant differences were calculated by the Mann-Whitney U test. RESULTS: A total of 493 circRNAs (165 upregulated, 328 downregulated) were differentially expressed in the plasma of FSGS patients (n = 3) and normal controls (n = 3). Eight candidate circRNAs were demonstrated to be circular and stable transcripts. Among them, hsa_circ_0001230 and hsa_circ_0023879 were significantly upregulated in FSGS patients (n = 29) compared to normal controls (n = 51). The areas under the curve value of hsa_circ_0001230 and hsa_circ_0023879 were 0.668 and 0.753, respectively, while that of the two-circRNA panel was 0.763. The RNA pull-down analysis revealed that hsa_circ_0001230 and hsa_circ_0023879 could sponge hsa-miR-106a. Additionally, hsa_circ_0001230 and hsa_circ_0023879 positively regulated hsa-miR-106a target genes phosphatase and tensin homolog (PTEN) and Bcl-2-like protein 11 (BCL2L11) in podocytes. CONCLUSION: hsa_circ_0001230 and hsa_circ_0023879 are novel blood biomarkers for FSGS. They may regulate podocyte apoptosis by competitively binding to hsa-miR-106a.


Assuntos
Biomarcadores , Glomerulosclerose Segmentar e Focal , MicroRNAs , RNA Circular , RNA Mensageiro , Humanos , Glomerulosclerose Segmentar e Focal/sangue , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/diagnóstico , RNA Circular/sangue , RNA Circular/genética , Biomarcadores/sangue , MicroRNAs/sangue , MicroRNAs/genética , RNA Mensageiro/sangue , RNA Mensageiro/genética , Podócitos/metabolismo , Podócitos/patologia , Masculino , Feminino , Adulto , Redes Reguladoras de Genes
9.
Network ; : 1-13, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655710

RESUMO

These results highlight the transformative potential of neural network algorithms in providing consistency and transparency while reducing the inherent subjectivity in human evaluations, revolutionizing translation quality assessment in academia. The findings have significant implications for academia, as reliable translation quality evaluations are crucial for fostering cross-cultural knowledge exchange. However, challenges such as domain-specific adaptation require further investigation to improve and maximize the effectiveness of this novel approach, ultimately enhancing the accessibility of academic content and promoting global academic discourse. The proposed method involves using neural network algorithms for assessing college-level English translation quality, starting with data collection and preparation, developing a neural network model, and evaluating its performance using human assessment as a benchmark. The study employed both human evaluators and a neural network model to assess the quality of translated academic papers, revealing a strong correlation (0.84) between human and model assessments. These findings suggest the model's potential to enhance translation quality in academic settings, though additional research is needed to address certain limitations. The results show that the Neural Network-Based Model achieved higher scores in accuracy, precision, F-measure, and recall compared to Traditional Manual Evaluation and Partial Automated Model, indicating its superior performance in evaluating translation quality.

10.
BMC Genomics ; 24(1): 30, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653780

RESUMO

BACKGROUND: The genus Zingiber of the Zingiberaceae is distributed in tropical, subtropical, and in Far East Asia. This genus contains about 100-150 species, with many species valued as important agricultural, medicinal and horticultural resources. However, genomic resources and suitable molecular markers for species identification are currently sparse. RESULTS: We conducted comparative genomics and phylogenetic analyses on Zingiber species. The Zingiber chloroplast genome (size range 162,507-163,711 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 86,986-88,200 bp), a small single copy (SSC, 15,498-15,891 bp) and a pair of inverted repeats (IRs, 29,765-29,934 bp). The genomes contain 113 unique genes, including 79 protein coding genes, 30 tRNA and 4 rRNA genes. The genome structures, gene contents, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats and long repeats are conservative in the genomes of Zingiber. The analysis of sequence divergence indicates that the following genes undergo positive selection (ccsA, ndhA, ndhB, petD, psbA, psbB, psbC, rbcL, rpl12, rpl20, rpl23, rpl33, rpoC2, rps7, rps12 and ycf3). Eight highly variable regions are identified including seven intergenic regions (petA-pabJ, rbcL-accD, rpl32-trnL-UAG, rps16-trnQ-UUG, trnC-GCA-psbM, psbC-trnS-UGA and ndhF-rpl32) and one genic regions (ycf1). The phylogenetic analysis revealed that the sect. Zingiber was sister to sect. Cryptanthium rather than sect. Pleuranthesis. CONCLUSIONS: This study reports 14 complete chloroplast genomes of Zingiber species. Overall, this study provided a solid backbone phylogeny of Zingiber. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for Zingiber) of the generation of DNA markers. These results provide a foundation for future studies that seek to understand the molecular evolutionary dynamics or individual population variation in the genus Zingiber.


Assuntos
Genoma de Cloroplastos , Zingiberaceae , Filogenia , Zingiberaceae/genética , Genômica/métodos , Polimorfismo Genético , Evolução Molecular
11.
New Phytol ; 239(3): 949-963, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37247338

RESUMO

Ascorbic acid (AsA) is a water-soluble antioxidant that plays important roles in plant development and human health. Understanding the regulatory mechanism underlying AsA biosynthesis is imperative to the development of high AsA plants. In this study, we reveal that the auxin response factor SlARF4 transcriptionally inhibits SlMYB99, which subsequently modulates AsA accumulation via transcriptional activation of AsA biosynthesis genes GPP, GLDH, and DHAR. The auxin-dependent transcriptional cascade of SlARF4-SlMYB99-GPP/GLDH/DHAR modulates AsA synthesis, while mitogen-activated protein kinase SlMAPK8 not only phosphorylates SlMYB99, but also activates its transcriptional activity. Both SlMYB99 and SlMYB11 proteins physically interact with each other, thereby synergistically regulating AsA biosynthesis by upregulating the expression of GPP, GLDH, and DHAR genes. Collectively, these results demonstrate that auxin and abscisic acid antagonistically regulate AsA biosynthesis during development and drought tolerance in tomato via the SlMAPK8-SlARF4-SlMYB99/11 module. These findings provide new insights into the mechanism underlying phytohormone regulation of AsA biosynthesis and provide a theoretical basis for the future development of high AsA plants via molecular breeding.


Assuntos
Ácido Abscísico , Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Ácidos Indolacéticos , Ácido Ascórbico , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas
12.
J Exp Bot ; 74(3): 1022-1038, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36385320

RESUMO

Cellobiose is the primary product of cellulose hydrolysis and is expected to function as a type of pathogen/damage-associated molecular pattern in evoking plant innate immunity. In this study, cellobiose was demonstrated to be a positive regulator in the immune response of lettuce, but halted autoimmunity when lettuce was exposed to concentrations of cellobiose >60 mg l-1. When lettuce plants were infected by Botrytis cinerea, cellobiose endowed plants with enhanced pre-invasion resistance by activating high ß-1,3-glucanase and antioxidative enzyme activities at the initial stage of pathogen infection. Cellobiose-activated core regulatory factors such as EDS1, PTI6, and WRKY70, as well as salicylic acid signaling, played an indispensable role in modulating plant growth-defense trade-offs. Transcriptomics data further suggested that the cellobiose-activated plant-pathogen pathways are involved in microbe/pathogen-associated molecular pattern-triggered immune responses. Genes encoding receptor-like kinases, transcription factors, and redox homeostasis, phytohormone signal transduction, and pathogenesis-related proteins were also up- or down-regulated by cellobiose. Taken together, the findings of this study demonstrated that cellobiose serves as an elicitor to directly activate disease-resistance-related cellular functions. In addition, multiple genes have been identified as potential modulators of the cellobiose-induced immune response, which could aid understanding of underlying molecular events.


Assuntos
Arabidopsis , Arabidopsis/genética , Lactuca/genética , Celobiose/metabolismo , Resistência à Doença/genética , Botrytis/fisiologia , Doenças das Plantas , Regulação da Expressão Gênica de Plantas
13.
Cancer Cell Int ; 23(1): 186, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649034

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is a hypermetabolic disease. Abnormal up-regulation of glycolytic signaling promotes tumor growth, and glycolytic metabolism is closely related to immunotherapy of renal cancer. The aim of the present study was to determine whether and how the glycolysis-related biomarker TCIRG1 affects aerobic glycolysis, the tumor microenvironment (TME) and malignant progression of clear cell renal cell carcinoma (ccRCC). METHODS: Based on The Cancer Genome Atlas (TCGA, n = 533) and the glycolysis-related gene set from MSigDB, we identified the glycolysis-related gene TCIRG1 by bioinformatics analysis, analyzed its immunological properties in ccRCC and observed how it affected the biological function and glycolytic metabolism using online databases such as TIMER 2.0, UALCAN, LinkedOmics and in vitro experiments. RESULTS: It was found that the expression of TCIRG1, was significantly increased in ccRCC tissue, and that high TCIRG1 expression was associated with poor overall survival (OS) and short progression-free interval (PFI). In addition, TCIRG1 expression was highly correlated with the infiltration immune cells, especially CD4+T cell Th1, CD8+T cell, NK cell, and M1 macrophage, and positively correlated with PDCD1, CTLA4 and other immunoinhibitors, CCL5, CXCR3 and other chemokines and chemokine receptors. More importantly, TCIRG1 may regulate aerobic glycolysis in ccRCC via the AKT/mTOR signaling pathway, thereby affecting the malignant progression of ccRCC cell lines. CONCLUSIONS: Our results demonstrate that the glycolysis-related biomarker TCIRG1 is a tumor-promoting factor by affecting aerobic glycolysis and tumor immune microenvironment in ccRCC, and this finding may provide a new idea for the treatment of ccRCC by combination of metabolic intervention and immunotherapy.

14.
Langmuir ; 39(39): 13946-13952, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37736671

RESUMO

Studies on self-assembling systems with a controllable morphology responding to light stimulation are significant for revealing the process and mechanism of assembly. Here, a molecule of spiropyran derivative (SP) possessing photoresponsive assembly morphology is constructed. SP self-assembles into irregular sheet-like structures whose morphology can be significantly transformed into regular nanospheres under continuous ultraviolet light stimulation. The UV-vis absorption spectra indicate that 56% of SP are isomerized from closed-ring form (SPC) to open-ring form (SPO) with color changes from colorless to magenta. Furthermore, theoretical calculations demonstrate that SPO-SPO aggregates possess stronger van der Waals forces than do SPC-SPC aggregates and tend to form stable intermediates combined with SPO isomers. Therefore, the isomerization of SP from SPC to SPO and the differences in intermolecular interactions are important factors in the morphological transition. Our study provides an efficient strategy to modulate the assembled morphology, which holds great promise to be applied in the field of smart materials.

15.
Macromol Rapid Commun ; 44(21): e2300360, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37566799

RESUMO

The construction of tunable morphological systems has important implications for understanding the mechanism of molecular self-assembly. In this study, a spiropyran derivative M1 is reported with light-responsive assembly morphology, which can be tuned from nanosphere to nanorod by ultraviolet light irradiation. The absorption spectra show that M1 molecules are transformed from closed-ring (SP) isomers into open-ring (MC) isomers and start to form H-aggregates with increasing irradiation time. Density functional theory calculations indicate that MC-MC isomers possess stronger binding energy than SP-SP isomers. The MC isomers may thus facilitate the dissociation of the SP-SP aggregates and promote the change of self-assembled morphology with the aid of stronger π-π stackings and dipole-dipole interactions. The research gives an effective method for modulating the morphology of assemblies, with great potential for applications in smart materials.


Assuntos
Nanosferas , Nanotubos , Benzopiranos/química , Raios Ultravioleta
16.
Clin Lab ; 69(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844058

RESUMO

BACKGROUND: To explore the reason and treating method for the negative value of uric acid in a patient patient. METHODS: The serum of a patient with a negative uric acid detection value was diluted 5 times with "sterilized water" and with "normal saline". Additionally, the serum was treated with PEG6000 protein, and uric acid was detected. RESULTS: Elevated IgM paraprotein in the patient resulted in abnormal uric acid response curves in serum samples or diluted serum samples. After the serum was precipitated with PEG600, the uric acid response curve was basically normal. CONCLUSIONS: The negative value of the patient's uric acid test was caused by the IgM paraprotein. After removing the interference by PEG6000 protein a true and accurate uric acid result was obtained.


Assuntos
Paraproteínas , Ácido Úrico , Humanos , Imunoglobulina M
17.
BMC Public Health ; 23(1): 1303, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420171

RESUMO

BACKGROUND: Short-term air pollution exposure and intracerebral hemorrhage (ICH) risk are related. However, the impact of the pollutant levels decline on this relationship, which attributes to clean air policy implementation and the COVID-19 pandemic lockdown, is unclear. In the present research, we explored the influence of different pollutant levels on ICH risk during eight years in a southwestern China megacity. METHODS: Our research used a time-stratified case-crossover design. We retrospectively analyzed ICH patients in a teaching hospital from January 1, 2014, to December 31, 2021, and divided 1571 eligible cases into two groups (1st group: 2014-2017; 2nd group: 2018-2021). We observed the trend of every pollutant in the entire study period and compared the pollution levels in each group, using air pollutants data (PM2.5, PM10, SO2, NO2, CO, and O3) documented by the local government. We further established a single pollutant model via conditional logistic regression to analyze the association between short-term air pollutants exposure and ICH risk. We also discussed the association of pollution levels and ICH risk in subpopulations according to individual factors and monthly mean temperature. RESULTS: We found that five air pollutants (PM2.5, PM10, SO2, NO2, CO) exhibited a continuous downward trend for the whole duration, and the daily concentration of all six pollutants decreased significantly in 2018-2021 compared with 2014-2017. Overall, the elevation of daily PM2.5, SO2, and CO was associated with increased ICH risk in the first group and was not positively associated with risk escalation in the second group. For patients in subgroups, the changes in the influence of lower pollutant levels on ICH risk were diverse. In the second group, for instance, PM2.5 and PM10 were associated with lower ICH risk in non-hypertension, smoking, and alcohol-drinking participants; however, SO2 had associations with increased ICH risk for smokers, and O3 had associations with raised risk in men, non-drinking, warm month population. CONCLUSIONS: Our study suggests that decreased pollution levels diminish the adverse effects of short-term air pollutants exposure and ICH risk in general. Nevertheless, the influence of lower air pollutants on ICH risk in subgroups is heterogeneous, indicating unequal benefits among subpopulations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Ambientais , Masculino , Humanos , Estudos Cross-Over , Dióxido de Nitrogênio/análise , Pandemias , Estudos Retrospectivos , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , China/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise
18.
Biochem Genet ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37882923

RESUMO

Current study aims to investigate the biological function of circular RNA (circRNA, circ_0000337) in cervical cancer (CC). Bioinformatic analyses were used to predict targets for circ_0000337 and miR-155-5p, and analyze the gene expression differences between cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tissues and normal tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were applied to assess mRNA and protein expressions of circ_0000337, microRNA-155-5p (miR-155-5p) and member RAS oncogene family (RAB3B), respectively. Following the establishment of gain/loss-of-function models, CCK-8 was performed to evaluate cell proliferation. Bioinformatics analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) were used to identify the interaction in circ_0000337, miR-155-5p, and RAB3B. Circ_0000337 and RAB3B were upregulated, while miR-155-5p was downregulated in CC tissues and cell lines. circ_0000337 overexpression promoted cell proliferation, circ_0000337 knock down inhibited cell proliferation by sponging miR-155-5p. RAB3B was a target of miR-155-5p which was positively regulated by circ_0000337. In the collected CC tissues, there was a negative correlation between miR-155-5p and circ_0000337 or RAB3B, and a positive correlation between circ_0000337 and RAB3B. miR-155-5p was positively, while RAB3B was negatively correlated with OS in patients with CC, and they were negatively correlated. In conclusion, circ_0000337 upregulates RAB3B by sponging miR-155-5p to promote CC cell proliferation.

19.
Acta Neurochir (Wien) ; 165(11): 3255-3266, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697007

RESUMO

PURPOSE: External ventricular drainage (EVD) is a life-saving neurosurgical procedure, of which the most concerning complication is EVD-related infection (ERI). We aimed to construct and validate an ERI risk model and establish a monographic chart. METHODS: We retrospectively analyzed the adult EVD patients in four medical centers and split the data into a training and a validation set. We selected features via single-factor logistic regression and trained the ERI risk model using multi-factor logistic regression. We further evaluated the model discrimination, calibration, and clinical usefulness, with internal and external validation to assess the reproducibility and generalizability. We finally visualized the model as a nomogram and created an online calculator (dynamic nomogram). RESULTS: Our research enrolled 439 EVD patients and found 75 cases (17.1%) had ERI. Diabetes, drainage duration, site leakage, and other infections were independent risk factors that we used to fit the ERI risk model. The area under the receiver operating characteristic curve (AUC) and the Brier score of the model were 0.758 and 0.118, and these indicators' values were similar when internally validated. In external validation, the model discrimination had a moderate decline, of which the AUC was 0.720. However, the Brier score was 0.114, suggesting no degradation in overall performance. Spiegelhalter's Z-test indicated that the model had adequate calibration when validated internally or externally (P = 0.464 vs. P = 0.612). The model was transformed into a nomogram with an online calculator built, which is available through the website: https://wang-cdutcm.shinyapps.io/DynNomapp/ . CONCLUSIONS: The present study developed an infection risk model for EVD patients, which is freely accessible and may serve as a simple decision tool in the clinic.


Assuntos
Drenagem , Adulto , Humanos , Drenagem/efeitos adversos , Procedimentos Neurocirúrgicos , Reprodutibilidade dos Testes , Estudos Retrospectivos
20.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049858

RESUMO

In the rapidly growing area of high-frequency communications, polyimide films with ultralow dielectric constant and dielectric loss, adequate insulating strength, and recyclability are in high demand. Using a synthesized soluble fluorinated polyimide, a series of recyclable porous dielectric films with varying porosities were fabricated in this study through nonsolvent-induced phase separation. By manipulating the mass ratio of the binary solvent used to dissolve the polyimide, the shape, size, and size distribution of the pores generated throughout the polyimide matrix can be accurately regulated. The porosity and average pore size of the as-prepared porous films were adjustable between 71% and 33% and between 9.31 and 1.00 µm, respectively, which resulted in a variable dielectric constant of 1.51-2.42 (100 kHz) and electrical breakdown strength of 30.3-119.7 kV/mm. The porous sPI film with a porosity rate of 48% displayed a low dielectric constant of 2.48 at 10 GHz. Coupled with their superior thermal stability, mechanical characteristics, and recyclability, these porous polyimide films are highly promising for constructing high-frequency microelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA