Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 13(18): 8136-9, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21437306

RESUMO

In this communication, we highlight that statistical approaches for chemical reactions describe reasonably well the low energy dynamics of the title process. Consequently, such methods prove to be valuable to compute rate constants from low to room temperatures. Results are compared with experiment and recent precise quantum wave packet calculations [J. Phys. Chem. A, 2009, 113, 5285].

2.
J Chem Phys ; 130(11): 114103, 2009 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-19317527

RESUMO

The transformation from angle-action variables to Cartesian coordinates is an important step of the semiclassical description of bimolecular collisions and photofragmentations. The basic reason is that dynamical conditions corresponding to molecular beam experiments are ideally generated in angle-action variables, whereas the classical equations of motion are ideally solved in Cartesian coordinates by standard numerical approaches. To our knowledge, this transformation is available in the literature only for atom-diatom arrangements. The goal of the present work is to derive it for diatom-polyatom ones. The analogous transformation for any type of arrangement may then be straightforwardly deduced from that presented here.

3.
J Chem Phys ; 126(4): 041102, 2007 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-17286453

RESUMO

The Gaussian weighting (GW) procedure, recently used in the classical treatment of molecular collisions, is a practical way of taking into account quantization of product vibrational actions. The goal of this brief communication is to show that the GW procedure may drastically improve the predictions of the recoil energy distribution between final fragments, an observable frequently measured in molecular beam experiments.

4.
Phys Chem Chem Phys ; 8(39): 4550-8, 2006 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17047752

RESUMO

A full-dimensional quasi-classical trajectories study on the vibrational predissociation (VP) of the Ne79Br2(B) complex is presented. Following the most recent experiments, the Br2(B) vibrational levels v'=16-29 were explored. The total angular momentum, J, was taken to be zero, and a semiclassical Franck-Condon model to compute initial conditions from quantum distributions was employed. Predissociation lifetimes were extracted from Ne79Br2 population decay by using two different exponential laws. Predicted lifetimes are in excellent agreement with the last experimental results [J. A. Cabrera, C. R. Bieler, B. C. Olbricht, W. E. van der Veer and K. C. Janda, J. Chem. Phys., 2005, 123, 054311]. The Br2 fragment ro-vibrational distributions resulting from the VP of the molecule were obtained from the statistics of classical magnitudes using the standard binning procedure. Computed rotational distributions (for the Deltav'=-1, -2 channels) are also in very good agreement with the experimental results [M. Nejad-Sattari and T. A. Stephenson, J. Chem. Phys., 1997, 106 5454]. The influence of two quantum effects-the closing of the Deltav'=-1 dissociation channel and the intramolecular vibrational relaxation (IVR) mechanism-on the agreement with experimental rotational distributions, is discussed. Due to the classical character of our calculations and the binning procedure we used, the agreement of computed vibrational distributions with experimental and quantum theoretical is qualitative. For instance, for v'=28-for which the Deltav'=-1 channel is experimentally found to be closed-the Deltav'=-2 channel becomes statistically more significant. A discussion on the viability of similar quasi-classical methods to model the VP dynamics of analogous clusters is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA